\(A=1+3+3^2+3^3+3^4+.....+3^{2012}\) và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Ta có: 3A=3+\(^{3^2+3^3+3^4+3^5+...+3^{2012}+3^{2013}}\)

\(\Rightarrow\)3A-A=2A=(\(3+3^2+3^3+3^4+...+3^{2013}\)) - (\(1-3^{ }-3^2-3^3-3^4-...-3^{2012}\))

\(\Rightarrow\)2A=\(3^{2013}-1\)\(\Rightarrow\)A=\(\left(3^{2013}-1\right):2\)\(\Rightarrow\)B-A=(\(^{\left(3^{2013}:2\right)-\left(\left(3^{2013}-1\right):2\right)\Rightarrow}\)

17 tháng 4 2017

A = 1 + 3 + 32 +...+ 32012

3A = 3 + 32 + 33 +...+ 32013

3A - A = (3 + 32 + 33 +...+ 32013) - (1 + 3 + 32 +...+ 32012)

2A = 32013 - 1

A = \(\frac{3^{2013}-1}{2}\)

=> B - A = \(\frac{3^{2013}}{2}-\frac{3^{2013}-1}{2}=\frac{3^{2013}-\left(3^{2013}-1\right)}{2}=\frac{3^{2013}-3^{2013}+1}{2}=\frac{1}{2}\)

9 tháng 5 2017

No, I can't. I will help you tomorrow!

9 tháng 5 2017

i can't help you

sorry because i in grade 5

9 tháng 5 2017

yes me too in grade 5

19 tháng 4 2017

\(2012+\frac{2012}{1+2}+\frac{2012}{1+2+3}+.....+\frac{2012}{1+2+3+....+2011}\)

\(=\frac{2012}{\frac{1\left(1+1\right)}{2}}+\frac{2012}{\frac{2\left(2+1\right)}{2}}+\frac{2012}{\frac{3\left(3+1\right)}{2}}+.....+\frac{2012}{\frac{2011\left(2011+1\right)}{2}}\)

\(=\frac{4024}{1.2}+\frac{4024}{2.3}+\frac{4024}{3.4}+.....+\frac{4024}{2011.2012}\)

\(=4024\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)

\(=4024\left(1-\frac{1}{2012}\right)\)

\(=4024.\frac{2011}{2012}\)

\(=4022\)

11 tháng 4 2017

Bài 1)

Ta có:

A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)

A < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

A < \(1-\dfrac{1}{8}\) = \(\dfrac{7}{8}\) < 1

Vậy A < 1

12 tháng 4 2017

Bài 2)

Ta thấy:

\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)

\(\Rightarrow\) \(\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)

\(\Rightarrow\) \(\dfrac{2011+2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)

\(\Rightarrow\) A < B

Bài 3)

Ta có:

B = \(\left(1-\dfrac{1}{1}\right)\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)

= \(0.\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)

= 0

Bài 3)

Ta có:

A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\)

\(\Rightarrow\) 2A = \(2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)

\(\Rightarrow\) 2A = \(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\)

\(\Rightarrow\) 2A - A = \(\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\right)\)-\(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)

\(\Rightarrow\) A = 2 - \(\dfrac{1}{2^{2012}}\) = \(\dfrac{2^{2013}-1}{2^{2012}}\)

Bài 5)

\(\pi\) + 5 \(⋮\) \(\pi\) - 2

\(\Leftrightarrow\) \(\pi\) - 2 + 7 \(⋮\) \(\pi\) - 2

\(\Leftrightarrow\) 7 \(⋮\) \(\pi\) - 2 (vì \(\pi\) - 2 \(⋮\) \(\pi\) - 2)

\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) Ư(7)

\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) \(\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow\) \(\pi\) \(\in\) \(\left\{1;3;-5;9\right\}\)

6 tháng 5 2017

A=đã cho.

=>3A=3+3^2+3^3+3^4+...+3^2012+3^2013.

=>3A-A=3^2013-1.

=>2A=3^2013-1.

=>A=\(\frac{3^{2013-1}}{2}\)

=>B-A=3^2013:2-(3^2013-1)/82.

=>B-A=1/2.

Vậy B-A=1/2.

6 tháng 5 2017

3 * A= 3*( 1+3+3^2+........+3^2012)                                                                                                                                                                                              3A=3+3^2+3^3+......+3^2013  - A=1+3+3^2+.......+3^2012                                                                                                                                                       2A= 3^2013 - 1                                                                                                                                                                                                                              A=3^2013-1/ 2                                                                                                                                                                                                                               vi 3^2013-1/2 < 3^2013 /2 nen A < B                                                                                         

13 tháng 3 2017

a,Ta có: A có 2016 số số hạng, ghép A thành 504 nhóm, mỗi nhóm có 4 số hạng như sau :

\(A=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})\)

\(A=3.(1+3+3^2)+3^5.(1+3+3^2)+....+3^{2013}.(1+3+3^2)\)

\(A=3.13+3^5.13+....+3^{2013}.13\)

\(A=13.(3+3^5+...+3^{2013})⋮13\)

\(\Rightarrow A⋮13\)

13 tháng 3 2017

\(a\)) Ta có :

\(A=3+3^2+3^3+..........+3^{2016}\) (2016 số hạng )

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}\right)\) (672 nhóm )

\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+.......+3^{2015}\left(1+3+3^2\right)\)

\(A=3.13+3^4.13+........+3^{2015}.13\)

\(A=13\left(3+3^4+.......+3^{2016}\right)\)

\(\Rightarrow A\) \(⋮\) \(13\)

\(\Rightarrowđpcm\)

\(b\)) Ta có :

\(A=3+3^2+3^3+..........+3^{2016}\)

\(\Rightarrow3A=3^2+3^3+...............+2^{2016}+3^{2017}\)

\(\Rightarrow3A-A=3^{2017}-3\)

\(\Rightarrow2A=3^{2017}-3\)

\(\Rightarrow2A+3=3^{2017}\)(1)

Theo bài ta có :

\(2A+3=3^{2x}\)(2)

Từ (1) và (2) ta có :

\(3^{2x}=3^{2017}\)

\(\Rightarrow2x=2017\)

\(x=2017:2\)

\(x=1008,5\) ( ko thoả mãn \(x\in N\))

Vậy ko tìm dc giá trị của \(x\) thỏa mãn theo yêu cầu

28 tháng 3 2018

viết cả cách làm nhé!

Bài 1:

a. https://olm.vn/hoi-dap/detail/100987610050.html

b. Giống nhau hoàn toàn => P=Q

Chỉ biết thế thôi