Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có:
f(a + b) = 10(a + b)
f(a) + f(b) = 10a + 10b = 10(a+ b)
=> f(a + b) = f(a) + f(b)
b, f(x) = x2 <=> 10x = x2
<=> x = 10 hoặc x = 0
a) f(-2)=2.(-2)+1=-4+1=-3
f(a)=2a+1
b) g(-2)=3.(-2)-2= - 6-2=-8
g(a)=3a-2
k đúng cho mk nha
Để \(f\left(x\right)=g\left(x\right)\Leftrightarrow2x+1=-x+3\Leftrightarrow x=\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)
ta có: f(x) + g(x) = ( 7 x^6 - 6x ^5 +5x^4 -4x^3 +3x^2 -2x +1) - ( x - 2x^2 +3x^3 - 4x^4 + 5x^5 - 6x^6)
\(=7x^6-6x^5+5x^4-4x^3+3x^2-2x+1-x+2x^2-3x^3+4x^4-5x^5+6x^6\)
\(=\left(7x^6+6x^6\right)-\left(6x^5+5x^5\right)+\left(5x^4+4x^4\right)-\left(4x^3+3x^3\right)+\left(3x^2+2x^2\right)-\left(2x+x\right)+1\)
\(=13x^6-11x^5+9x^4-7x^3+5x^2-3x+1\)
Chúc bn học tốt !!!!!!
Uhhhhhhhhhhhhhhhhhhhhhhhhhh😥😥😥😥😥😥😥😥😥😥😥????????????...............
2/
Ta có f (x) có nghiệm x = -1
=> \(f\left(-1\right)=0\)
=> \(a\left(-1\right)^2+b\left(-1\right)+c=0\)
=> \(a-b+c=0\)
=> \(-b=-c-a\)
=> \(-b=-\left(c+a\right)\)
=> \(b=c+a\)(đpcm)
\(a.\)Ta có:
\(f\left(x\right)=2x^2-3x-\left(5x^2+4x\right)+4x\left(x+1\right)+1\)
\(=2x^2-3x-5x^2-4x+4x^2+4x+1\)
\(=x^2-3x+1\)
\(b.\)Tại \(x=-1\)thì \(g\left(x\right)=0\)nên:
\(g\left(-1\right)=0\)\(\Leftrightarrow a\left(-1\right)^2+b\left(-1\right)-2=0\)
\(\Leftrightarrow a.1+\left(-b\right)=0+2\)
\(\Leftrightarrow a-b=2\) \(\left(1\right)\)
Tại: \(x=2\)thì \(g\left(2\right)=0\)nên:
\(g\left(2\right)=0\)\(\Leftrightarrow a.2^2+b.2-2=0\)
\(\Leftrightarrow4a+2b=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta tìm được \(a=1\)và \(b=-1\)
Lỡ nhấn nút gửi, làm tiếp nhé:
\(c.\)Với \(a=1\)và \(b=-1\)thì \(g\left(x\right)=x^2-x-2\)
Ta có: \(g\left(x\right)=x^2-1-x-1=\left(x^2-1\right)-\left(x+1\right)=\left(x^2-x+x-1\right)-\left(x+1\right)\)
\(=\left[x\left(x-1\right)+x-1\right]-\left(x+1\right)=\left(x+1\right)9x-1-\left(x+1\right)=\left(x+1\right)\left(x-1-1\right)\)
Vậy: \(g\left(x\right)=\left(x-2\right)\left(x+1\right)\)
Ta có: \(h\left(x\right)==f\left(x\right)-g\left(x\right)=x^2-3x+1-\left(x^2-x-2\right)=-2x+3\)
\(h\left(x\right)=0\)\(\Leftrightarrow-2x+3=0\Leftrightarrow-2x=0-3=-3\Leftrightarrow z=\left(-3\right):\left(-2\right)\Leftrightarrow x=\frac{3}{2}\)
Khi \(a=\frac{3}{2}\)thì \(f\left(a\right)-g\left(a\right)=0\Leftrightarrow f\left(a\right)=g\left(a\right)\)
Chắc vậy !!!
a,
f(-1)=3*(-1)+1=-2
g(-1)=1-3*(-1)=4
b,
để f(x)=g(x)
thì 3*x+1=1-3*x
=> 3*x+3*x=1-1
6*x=0
x=0/6
x=0
a) Thay f(x)=f(-1)=3.(-1)+1=-2
Thay g(x)=g(-1)=1-3.(-1)=4
=> f(x)+g(x)=-2+4=2
b) f(x)=g(x)=3x+1=1-3x
=> (3x+1)-(1-3x)=0
<=> 3x+1-1+3x=0
<=> 6x=0 => x=0