Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{\left(-2\right)^5}{\left(-2\right)^3}=\left(-2\right)^{5-3}=\left(-2\right)^2=4\)
b) \(y\ne0:B=\dfrac{\left(-y\right)^7}{\left(-y\right)^3}=\left(-y\right)^{7-3}=\left(-y\right)^4=y^4\)
c) \(x\ne0:C=\dfrac{\left(x\right)^{12}}{\left(-x\right)^{10}}=\left(x\right)^{12-10}=\left(x\right)^2=x^4\)
d) \(x\ne0:D=\dfrac{2x^6}{\left(2x\right)^3}=\dfrac{2x^6}{8x^3}=\dfrac{1}{4}\left(x\right)^{6-3}=\dfrac{1}{4}\left(x\right)^3\)
e) \(x\ne0:E=\dfrac{\left(-3x\right)^5}{\left(-3x\right)^2}=\left(-3x\right)^{5-2}=\left(-3x\right)^3=-27x^3\)
f) \(x,y\ne0:F=\dfrac{\left(xy^2\right)^4}{\left(xy^2\right)^2}=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2=x^2y^4\)
i) \(x\ne-2:I=\dfrac{\left(x+2\right)^9}{\left(x+2\right)^6}=\left(x+2\right)^{9-6}=\left(x+2\right)^3\)
\(1\hept{\begin{cases}6x^2-8x+3x-4\\2x\left(3x-4\right)+\left(3x-4\right)\\\left(3x-4\right)\left(2x+1\right)\end{cases}}\)
\(2\hept{\begin{cases}7x^2-7xy-5x+5y+6xy\\7x\left(x-y\right)-5\left(x-y\right)+\frac{6xy\left(x-y\right)}{\left(x-y\right)}\\\left(x-y\right)\left(7x-5+\frac{6xy}{\left(x-y\right)}\right)\end{cases}}\)
\(3\hept{\begin{cases}5x\left(x-y\right)-15\left(x-y\right)\\\left(x-y\right)\left(5x-15\right)\end{cases}}\)
\(4,,2x^2+x=x\left(2x+1\right)\)
\(5\hept{\begin{cases}x^3-4x-3x^2+12\\x\left(x^2-4\right)-3\left(x^2-4\right)\\\left(x+2\right)\left(x-2\right)\left(x-3\right)\end{cases}}\)
\(6\hept{\begin{cases}2x+2y+x^2-y^2\\2\left(x+y\right)+\left(x+y\right)\left(x-y\right)\\\left(x+y\right)\left(2+x-y\right)\end{cases}}\)
\(7\hept{\begin{cases}\left(x^2y-2xy\right)-\left(xy-2y\right)+\left(xy-y\right)\\xy\left(x-2\right)-y\left(x-2\right)+y\left(x-1\right)\\y\left(X-2\right)\left(x-1\right)+y\left(x-1\right)\end{cases}}\Leftrightarrow y\left(x-1\right)\left(x-2+1\right)\)
\(8\hept{\begin{cases}x\left(2-y\right)+z\left(2-y\right)\\\left(2-y\right)\left(x+1\right)\end{cases}}\)
1)
a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)
b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)
c) \(\dfrac{21x^2y^3}{6xy}=\dfrac{7xy^2}{2}\left(xy\ne0\right)\)
d) \(\dfrac{2x+2y}{4}=\dfrac{2\left(x+y\right)}{4}=\dfrac{x+y}{2}\)
e) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5\left(x-y\right)}{3\left(x-y\right)}=\dfrac{5}{3}\left(x\ne y\right)\)
f) \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}=-5x\dfrac{x-y}{y-x}=-5x\dfrac{x-y}{-\left(x-y\right)}\)
\(=-5x.\left(-1\right)=5x\left(x\ne y\right)\)
2)
a) Nhớ ghi ĐK vào nhá, lười quá :V\(\dfrac{x^2-16}{4x-x^2}=-\dfrac{\left(x-4\right)\left(x+4\right)}{x^2-4x}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)}=\dfrac{x+4}{x}\)
b) \(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)
\(=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)
c) \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+3\right)^3}{y\left(x+y\right)^2}\) ( câu này có gì đó sai sai )
d) \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)
\(=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8}{10}=\dfrac{4}{5}\)
e) \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)
\(=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)
a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay
\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)
b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1 và 2 hay
\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)
a)
\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)
b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)
c)
\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)
d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)
e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)
f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)
g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)
\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)
â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12
Để là phép chia hết thì số dư =0
Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12
b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x
số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36
c) Tương tự (x2-1)4x+(a+4)x+b
số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3
Lời giải:
\(P=5x(3x^2-x+2)-2x^2(x-2)+15(x-1)\)
\(=15x^3-5x^2+10x-2x^3+4x^2+15x-15\)
\(=13x^3-x^2+25x-15\)
Từ đây ta có thể thấy hệ số của $x^2$ trong đa thức là $-1$
\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(=9x\)
Thay x=15 \(\Rightarrow A=9.15=135\)
\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
\(=6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2-5xy^3\)
\(=19x^2y^2-11xy^3-8x^3\)
Thay x=1/2 ; y=2 vào B \(\Rightarrow19.\left(\frac{1}{2}\right)^2.2^2-11\cdot\frac{1}{2}\cdot2^3-8\cdot\left(\frac{1}{2}\right)^3\)
\(=19-44-1\)
\(=-26\)
= 3.(2x)(5y)2 = 3.2.25xy2 = 150xy2
Hệ số = 150
he so va da thuc la gi z a.em moi hoc lop 6 nhung tim hieu truoc