K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

ta có: 2x+1=10

        2x+1=-10

nếu 2x+1=10

=>2x=9

x=9/2

nếu 2x+1=-10

2x=-11

x=-11/2

vậy x=9/2

or -11/2

13 tháng 11 2018

2.|2x+1|=5

|2x+1|=5.2

|2x+1|=10

\(\Rightarrow\orbr{\begin{cases}2x+1=10\\2x+1=-10\end{cases}}\Rightarrow\orbr{\begin{cases}2x=9\\2x=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{9}{2}\\x=\frac{-11}{2}\end{cases}}\)

Vậy x=9/2 hoặc x=-11/2

24 tháng 2 2019

Vậy à :

Ta có gì nào : /2x+3/ + /y+2/ = 8 mà 2x + 3 = 3 => /2x+3/ = 3

+) /2x+3/+/y+2/=8=>3 +/y+2/=8=>/y+2/=5=>y=3 hoặc y = -7

+) với y = 3 => 2x + y = 3 => 2x+ 3 = 3 => 2x =0=>x = 0

+)với y = -7 => 2x + y = 3 => 2x + (-7) = 3 => 2x=10=>x=5

24 tháng 2 2019

khoan cấy 2x+3 ghi lôn nha thật ra là 2x+ y

12 tháng 6 2017

\(\left(2x+3\right)^2+\left(3x-2\right)^4=0\)

vì \(\left(2x+3\right)^2\ge0;\left(3x-2\right)^4\ge0\)

nên\(\Rightarrow\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^4=0\end{cases}\Rightarrow\hept{\begin{cases}2x+3=0\\3x-2=0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}\)

12 tháng 6 2017

Bạn làm như trên \(\uparrow\)sau đó thì kết luận :

Vậy không có giá trị x nào thỏa mản (2x + 3)2 + (3x - 2)4 = 0 .

8 tháng 9 2017

Bài 1:

Ta có: \(\left|x-2017\right|+\left|x+2018\right|=\left|2017-x\right|+\left| x+2018\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(\left|2017-x\right|+\left|x+2018\right|\ge\left|2017-x+x+2018\right|=4035\)

Dấu "=" sảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}2017-x\ge0\\x+2018\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2017\\x\ge-2018\end{matrix}\right.\Rightarrow-2018\le x\le2017\)

Vậy.....................

Bài 2:

Ta có:

\(\left\{{}\begin{matrix}\dfrac{1}{2!}=\dfrac{1}{1.2}\\\dfrac{1}{3!}=\dfrac{1}{2.3}\\.....\\\dfrac{1}{2017!}< \dfrac{1}{2016.2017}\end{matrix}\right.\)

\(\Rightarrow1+\dfrac{1}{1!}+\dfrac{1}{2!}+....+\dfrac{1}{2017!}< 1+1+\dfrac{1}{1.2}+...+\dfrac{1}{2016.2017}\)

Ta lại có:

\(1+1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{2016.2017}\)

\(=2+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2016}-\dfrac{1}{2017}\)

\(=2+1-\dfrac{1}{2017}=3-\dfrac{1}{2017}\)

\(\Rightarrow1+1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{2016.2017}< 3\)

Do đó: \(1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+....+\dfrac{1}{2017!}< 3\)(đpcm)

Chúc bạn học tốt!!!

8 tháng 9 2017

Cho hỏi \(!\) là j

26 tháng 12 2017

\(2x^2-x=0\\ \Rightarrow x\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)

b.

\(\dfrac{2x-1}{x+3}< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1>0\\x+3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1< 0\\x+3>0\end{matrix}\right.\end{matrix}\right.\)

tự giải tiếp

26 tháng 12 2017

Thanks

16 tháng 12 2018

giúp mình vs!!

16 tháng 12 2018

a,Xét tam giác AKC và AKB có:
CA=BA (gt)
CK=BK(gt)
AK :cạnh chung
=>Tam giác AKC=AKB(c.c.c)
=>góc AKC =góc AKB ( vì hai góc tương ứng)
lại có :góc AKC+góc AKB =180 °(vì hai góc kề bù )
=>AKB=AKC =90 °=>AK ⊥ BC (đpcm)
b,Ta có EC ⊥ CB
AK ⊥ CB
=>CE//AK(quan hệ từ vuông góc đến song song)

c, \(\widehat{CEA}+\widehat{CBA}\) =90

\(\widehat{ACB}+\widehat{ABC}\)  = 90

=> \(\widehat{CEA}=\widehat{ACB}\)

Xét tam giác vuông CAE và CAB có:

AC chung

\(\widehat{CEA}=\widehat{ACB}\)

=> Tam giác CAE = CAB

=> CE = CB ( hai cạnh tương ứng)

12 tháng 10 2018

Ta giả sử hai số vô hạn tuần hoàn là \(\frac{3k+1}{3}\)và \(\frac{3k+2}{3}\)(k là số tự nhiên)

xét tổng \(\frac{3k+1}{3}+\frac{3k+2}{3}=\frac{6k+3}{3}=2k+1\)

Vậy ko thể khẳng định như vậy

10 tháng 7 2019

B1:

Ta có: a - b = ab => a = ab + b = b(a + 1)

Thay a = b(a + 1) vào a  - b  = a : b ta có: \(a-b=\frac{b\left(a+1\right)}{b}=a+1\)

=> a - b = a + 1 => a - a - b = 1 => -b = 1 => b = -1 

Lại có: ab = a - b

<=> a x (-1) = a - (-1) <=> -a = a + 1 <=> -a - a = 1 <=> -2a = 1 <=> a = -1/2

Vậy...

B2:

a, \(3y\left(y-\frac{2}{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3y=0\\y-\frac{2}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=\frac{2}{5}\end{cases}}}\)

b, \(7\left(y-1\right)+2y\left(y-1\right)=0\)

\(\Rightarrow\left(y-1\right)\left(7+2y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\7+2y=0\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\2y=7\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\y=\frac{7}{2}\end{cases}}\)

B3: \(K=\frac{-2}{3}+\frac{3}{4}-\frac{-1}{6}+\frac{-2}{5}\)

\(K=\left(-\frac{2}{3}+\frac{1}{6}\right)+\left(\frac{3}{4}-\frac{2}{5}\right)\)

\(K=\left(\frac{-4}{6}+\frac{1}{6}\right)+\left(\frac{15}{20}-\frac{8}{20}\right)\)

\(K=\frac{-1}{2}+\frac{7}{20}=\frac{-10}{20}+\frac{7}{20}=\frac{-3}{20}\)

9 tháng 11 2021

giúp tớ với!!!khocroikhocroi