K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

Ta có \(\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-\left(a+b+c\right)x^2+\left(bc+ac+ab\right)x+abc\)

Để có đẳng thức trên \(\Leftrightarrow\hept{\begin{cases}\left(a+b+c\right)=a\\ac+bc+ab=b\\abc=c\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\b=-1\\c=1\end{cases}}\)

22 tháng 10 2017

Theo bài ra ta có:

\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-\left(a+b+c\right)x^2+x\left(ab+ac+bc\right)-abc\)

Sử dụng phương pháp hệ số bất định; ta được:

\(x^3-ax^2+bx-c=x^3-\left(a+b+c\right)x^2+x\left(ab+ac+bc\right)-abc\)

\(\Rightarrow\hept{\begin{cases}a+b+c=a\\b=ab+ac+bc\\c=abc\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}b+c=0\left(1\right)\\b=ab+ac+bc\left(2\right)\\c\left(1-ab\right)=0\left(3\right)\end{cases}}\)

Xét trường hợp (3); ta có:

\(c\left(1-ab\right)=0\Rightarrow\orbr{\begin{cases}c=0\\1-ab=0\Rightarrow ab=1\end{cases}}\)

Vì b + c= 0 nên b = 0

\(\Rightarrow ab\ne1\)và ab=0

\(\Rightarrow c=0\)

Thay vào (2) ta được: b = c = 0

VÌ b = c =0 nên a là tùy ý.

Vậy a là mọi số nguyên

 b = c =0 để hỏa mãn đẳng thức đề bài ra.

30 tháng 11 2017

P (1) = a + b+ c = 0 => a +b = -c (1)
P(-1) = 6 => a - b + c = 6 => a - b = 6 -c (2)
LẤy (1) - (2) = > a + b - a + b = - c - 6 +c => 2b = - 6 => b = - 3
LẤy (1) + (2) ta có: a + b + a - b = -c + 6 - c => 2a = 6 - 2c => a = 3-c
P (-2) = 4a - 2b + c = 4 (3-c) - 2. -3 + c = 3 => 12 - 4c + 6 + c = 3 => 18 -3c = 3 => 3c = 15 => c = 5
a = 3 -c = 3-5 = -2
Vậy a =-2 ; b =-3 ; c= 5

k cho mk nha

16 tháng 11 2019

1) 

Nếu x>1 thì x^2>1; y^2;z^2 cx lớn=1

=> x^2+y^2+z^2>1=> Loại

Nếu x<-1=> x^2>1; y^2;z^2 cx lớn=1

=> x^2+y^2+z^2>1=> Loại

CMTT vs y,z thì -1<=x,y,z<=1

TH1: -1<=x<0

=> x<x^2 do x âm và x^2 dương

CMTT => y<y^2; z<z^2

=> x+y+z<x^2+y^2+z^2

Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2

=> LOẠI.

TH2: 0<=x,y,z<=1

=> x>=x^2; y>=y^2; z>=z^2

=> x+y+z>=x^2+y^2+z^2

Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2

=> ''='' xảy ra <=> x=0 hoặc 1; y=0 hoặc 1; z=0 hoặc 1

=> (x,y,z)=(0;0;1) và các hoán vị

=> A=1.

8 tháng 7 2017

Ta có : A = x(x + 1)(x + 2)(x + 3)

=> A = [x(x + 3)].[(x + 1)(x + 2)]

=> A = (x2 + 3x) . (x2 + 3x + 2)

Đặt a = x2 + 3x + 1 

Khi đó A = (a - 1)(a + 1)

=> A = a2 - 1

=> A = x2 + 3x + 1 - 1

=> A = x2 + 3x

=> A = x2 + 3x + \(\frac{4}{9}-\frac{4}{9}\) 

\(\Rightarrow A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\)

Mà \(\left(x+\frac{2}{3}\right)^2\ge0\forall x\)

Nên : \(A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\ge-\frac{4}{9}\forall x\)

Vậy Amin = \(\frac{-4}{9}\) , dầu "=" xảy ra khi và chỉ khi x = \(-\frac{2}{3}\)

14 tháng 8 2020

a) ( 2x + 3 )( 3x + a ) = bx2 + cx - 3

<=> 2x( 3x + a ) + 3( 3x + a ) = bx2 + cx - 3

<=> 6x2 + 2ax + 9x + 3a = bx2 + cx - 3

<=> 6x2 + ( 2a + 9 )x + 3a = bx2 + cx - 3

Đồng nhất hệ số 

=> \(\hept{\begin{cases}b=6\\2a+9=c\\3a=-3\end{cases}}\Rightarrow\hept{\begin{cases}b=6\\c=7\\a=-1\end{cases}}\)

b) ( ax + 1 )( x2 - bx + 3 ) = 2x3 - x2 + 5x + c

<=> ax( x2 - bx + 3 ) + x2 - bx + 3 = 2x3 - x2 + 5x + c

<=> ax3 - abx2 + 3ax + x2 - bx + 3 = 2x3 - x2 + 5x + c 

<=> ax3 + ( 1 - ab )x2 + ( 3a - b )x + 3 = 2x3 - x2 + 5x + c

Đồng nhất hệ số 

=> \(\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\)và c = 3 => \(\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)

14 tháng 8 2020

a) Ta có: 

\(\left(2x+3\right)\left(3x+a\right)=bx^2+cx-3\)

\(\Leftrightarrow6x^2+\left(2a+9\right)x+3a=bx^2+cx-3\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}6=b\\2a+9=c\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-1\\b=6\\c=7\end{cases}}\)

b) \(\left(ax+1\right)\left(x^2-bx+3\right)=2x^3-x^2+5x+c\)

\(\Leftrightarrow ax^3+\left(1-ab\right)x^2+\left(3a-b\right)x+3=2x^3-x^2+5x+c\)

\(\Rightarrow\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\&c=3\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)