Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(8^5+2^{11}=34816\)
Phân tích ra thừa số nguyên tố số bằng: \(34816=2^{11}.17\)mà \(17⋮17\Leftrightarrow2^{11}.17⋮17\)
\(\Leftrightarrow34816⋮17\Leftrightarrow\left(8^5+2^{11}\right)⋮17\)
b) \(8^7-2^{18}=1835008\)
Phân tích ra thừa số nguyên tố số bằng: \(1835008=2^{18}.7=2^{17}.14\)mà \(14⋮14\Leftrightarrow2^{17}.14⋮14\Leftrightarrow2^{18}.7⋮14\)
\(\Leftrightarrow1835008⋮14\Leftrightarrow\left(8^7-2^{18}\right)⋮14\)
Lời giải : a/ Vì 85= (23)5 = 215 nên Ta có: 85+211 = 215+211 = 211.(24+1) = 211.17 chia hết cho 17
b/ Vì 87 = (23)7 = 221 nên 87- 218 = 221 – 218 = 218(23 – 1) = 218.7 = 217.14 chia hết cho 14
c/ Vì (9x + 13y) chia hết cho 19 nên 2.(9x + 13y) chia hết cho 19.
Tức là (18x + 26y) chia hết cho 19 . Ta có 18x + 26y = 19x – x + 19y + 7y = 19(x+y) +(7y – x)
chia hết cho 19, mà 19(x+y) chia hết cho 19 nên (7y – x) chia hết cho 19
Chúc Mạnh Châu học tập ngày càng giỏi nhé. Học thật tốt lý thuyết, nhớ công thức và vận dụng công thức linh hoạt.
Tổng của nó không chia hết cho 2 thì chắc chắn sẽ có 1 số lẽ và 1 số chẵn
Mà khi có số chẵn thì chắc chắn tích của nó chia hết cho 2
+ Tổng hai số tự nhiên không chia hết cho 2 thì tổng của 2 số tự nhiên đó là 1 số lẻ
+ Tổng của hai số tự nhiên cùng lẻ (Hoặc cùng chẵn) là 1 số chẵn, tổng hai số tự nhiên trong đó 1 số lẻ, số còn lại chẵn thì tổng của chúng là 1 số lẻ
=> Trong hai số tự nhiên đó sẽ có 1 số là số lẻ và số còn lại là số chẵn
+ Tích của 1 số chẵn với 1 số lẻ là 1 số chẵn
=> tích của chúng chia hết cho 2
=(3^4)^7-(3^3)^9-(3^2)^13
=3^28-3^27-3^26
=3^26.3^2-3^26.3-3^26.1
=3^26.(3^2-3-1)=3^26.5=3^22.3^4.5=3^22.405
Vậy 81^7-27^9-9^13 luôn chia hết cho 405
ta có :
\(2A=2+2^2+2^3+..+2^{100}=\left(1+2+2^2+..+2^{99}\right)+2^{100}-1=A+2^{100}-1\)
Vậy \(A=2^{100}-1=4^{50}-1\) nên \(A< 4^{50}\)
b, ta có : \(4^{50}\equiv1mod3\Rightarrow A=4^{50}-1\text{ chia hết cho 3}\)
còn : \(2^{100}=2.2^{99}=2.\left(2^3\right)^{33}=2.8^{33}\equiv2mod7\)
nên \(A=2^{100}-1\equiv1mod7\text{ hay A không chia hết chho 7}\)
f(5)=25a+5b+c chia hết cho 9;f(9)=81a+9b+c chia hết cho 5
ta có:f(104)=10816a+104b+c=(81a+9b+c)+(10735a+95b) chia hết cho 5
=(25a+5b+c)+(10791a+99b) chia hết cho 9
Mà (5,9)=1
Nên f(104) chia hết cho 45(đpcm)
Gọi số đó là abcd
Theo bài cho : abcd x 4 = dcba
=> abcd = dcba : 4
Vì dcba là số có 4 chữ số nên dcba < 10> abcd = dcba : 4 < 10> a ≤≤ 2
Hơn nữa , a phải là chữ số chẵn khác 0 nên a = 2
=> 2bcd x 4 = dcba => d > 2 và kết quả d x 4 có chữ số tận cùng bằng 2
=> d = 8
Vậy ta có: 2bc8 x 4 = 8cb2 => phép nhân 4 x b không có nhớ
Mà theo dấu hiệu chia hết cho 4 => b2 chia hết cho 4 => b có thể bằng 1;3;52;72; 92
=> b chỉ có thể bằng 1
=> 21c8 x 4 = 8c12 => 8000 + 400 + 40c + 32 = 8000 + 100c + 12
=> 420 = 60c => c = 420 : 60 = 7
Vậy số cần tìm là: 2178
a) Gọi số cần tìm là abcd
Nếu nhân số đó vs 4 thì ta dc số ấy viết theo thứ tự ngược lại là:
abcd.4=dcba
=>dcba chia hết cho 4
Vậy a thuộc 0;2;4;6;8} và a<3
=>a=2
dcba=2bcd.4>2000.4=8000
=> d thuộc {8;9}
Mà 4d<10
->d=8
8cd2=2bc8.4
=>8cb2 chia hết cho 4=>b2 chia hết cho 4
=>b thuộc {1;3;5;7;9}
Mà 4b<10
=>b=1
8c12=21c8.4
4c+3 có tận cùng là 1
=> 4c là số chẵn và=8
=>c thuộc {2;7}
Vs c=2: 0 thỏa mãn vì 2128.4e8212
Vs c=7 thỏa mãn vì 2178.4=8712
Vậy abcd=2178
a. ta có : \(\frac{5}{-3}=\frac{15}{-9}=-\frac{15}{9}\)
b.\(-\frac{1}{5}< 0< \frac{1}{100}\Rightarrow-\frac{1}{5}< \frac{1}{100}\)
c.\(\hept{\begin{cases}2^3=8\\3^2=9\end{cases}\Rightarrow2^3< 3^2}\)
a. \(\overline{2009n}\) chia hết cho 2 và 5 thì n bằng 0
b. \(\overline{2009n}\) chia hết cho 9 thì 2 + n chi hết cho 9. Vậy n = 7
c. \(\overline{2009n}\) chia hết cho 3 nhưng không chia hết cho 9 thì
2+n chia hết cho 3 và 2+n<9
hay n<7 và n + 2 chia hết cho 3. Vậy n = 1 hoặc n = 4