Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ˆA=12A^=12 sđ BCBC⏜ (tính chất góc nội tiếp)
⇒⇒ sđ BCBC⏜ =2ˆA=2.320=640=2A^=2.320=640
BC = BE (gt)
⇒⇒ sđ BCBC⏜ = sđ BEBE⏜ = 640
ˆB=12B^=12 sđ ACAC⏜ (tính chất góc nội tiếp)
⇒⇒ sđ ACAC⏜ =2ˆB=2.840=1680=2B^=2.840=1680
AC = CF (gt)
⇒⇒ sđ CFCF⏜ = sđ ACAC⏜ = 1680
sđ ACAC⏜ + sđ AFAF⏜ + sđ CFCF⏜ = 3600
⇒⇒ sđ AFAF⏜ =3600–=3600– sđ ACAC⏜ – sđ CFCF⏜ = 3600 – 1680. 2 = 240
Trong ∆ABC ta có: ˆA+ˆB+ˆC=1800A^+B^+C^=1800
\(\widehat{B}=\widehat{E}=65^0\)
\(\widehat{C}=\widehat{F}=55^0\)
\(\widehat{A}=\widehat{D}=60^0\)
Gọi \(\widehat{C}=a;\widehat{B}=b\)
Theo đề, ta có: \(\left\{{}\begin{matrix}a=\dfrac{5}{6}b\\b-a=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}b=10\\a=\dfrac{5}{6}b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=60\\a=50\end{matrix}\right.\)
\(\Leftrightarrow\widehat{B}=\widehat{E}=60^0;\widehat{C}=\widehat{F}=50^0;\widehat{A}=\widehat{D}=70^0\)
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
1, Xét \(\Delta MNP\) cân tại \(M\) có
\(\widehat{N}=\widehat{D}=\dfrac{180^o-\widehat{M}}{2}=\dfrac{180^o-70^o}{2}=55^o\)
2, Xét \(\Delta DEF\) cân tại \(D\)
\(\Rightarrow\widehat{E}=\widehat{F}=40^o\) ( hai góc đáy bằng nhau )
Ta có tổng 3 góc trong tam giác
\(\widehat{D}+\widehat{E}+\widehat{F}=180^o\\ =>\widehat{D}=180^o-40^o-40^o=100^o\)
1: góc N=góc P=(180-70)/2=55 độ
2: góc F=góc E=40 độ
góc D=180-40*2=100 độ
Xét ΔDEF có
\(\widehat{D}+\widehat{E}+\widehat{F}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{E}+\widehat{F}=150^0\)
\(\Leftrightarrow\dfrac{1}{2}\cdot\widehat{F}+\widehat{F}=150^0\)
\(\Leftrightarrow\dfrac{3}{2}\cdot\widehat{F}=150^0\)
hay \(\widehat{F}=100^0\)
Vì \(\widehat{E}+\widehat{F}=150^0\)
nên \(\widehat{E}+100^0=150^0\)
hay \(\widehat{E}=50^0\)
Vậy: \(\widehat{F}=100^0\); \(\widehat{E}=50^0\)