Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1.\)
\(\Rightarrow\frac{a}{b}=1\Rightarrow a=b\); b/c = 1 => b = c
=> a = b = c
\(\Rightarrow M=\frac{a^{10}.b^7.c^{2000}}{b^{2017}}=\frac{b^{10}.b^7.b^{2000}}{b^{2017}}=1\)
b) ta có: \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)
tương tự như trên
ta có: b + c = 2a
a+c = 2b
\(\Rightarrow M=\frac{\left(a+b\right).\left(b+c\right).\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=2^3=8\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{a+c}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\Rightarrow M=1\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)
=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)
Câu 2 :
Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Lời giải:
Ta có: \(\left\{\begin{matrix} P(1)=Q(2)\\ P(-1)=Q(5)\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2+a+4=4-10+b\\ 2-a+4=25-25+b\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -a+b=12\\ a+b=6\end{matrix}\right.\)
\(\Rightarrow 2b=12+6=18\Leftrightarrow b=9\), suy ra \(a=-3\)
b) Theo bài ra ta có:
\(\left\{\begin{matrix} B(0)=4\\ B(1)=3\\ B(-1)=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=4\\ a.1^2+b.1+c=a+b+c=3\\ a.(-1)^2+b(-1)+c=a-b+c=7\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=4\\ a+b=-1\\ a-b=3\end{matrix}\right.\)
Cộng 2 PT cuối cho nhau: \(\Rightarrow 2a=-1+3=2\Leftrightarrow a=1\)
\(\Rightarrow b=-2\)
Vậy \((a,b,c)=(1,-2,4)\)