Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,a>1\Leftrightarrow a.a>1.a\Leftrightarrow a^2>a\)
\(b,a< 1\) ( \(a>0\) )
\(\Leftrightarrow a.a< 1.a\)
\(\Leftrightarrow a^2< a\)
a) Điểm M sẽ thuộc góc phần tư thứ I
b) Điểm M sẽ thuộc góc phần tư thứ IV
c) Điểm M sẽ thuộc góc phần tư thứ II
d) Điểm M sẽ thuộc góc phần tư thứ III
1, Vì m > 2
\(\Rightarrow\) m - 2 > 2 - 2
\(\Rightarrow\) m(m - 2) > m(2 - 2)
\(\Rightarrow\) m2 - 2m > 0
a < 0; b < 0; a > b
\(\Rightarrow\) \(\frac{1}{a}< \frac{1}{b}\) (Vì mẫu a > b nên phân số \(\frac{1}{a}< \frac{1}{b}\))
Bạn ơi, đề cho a > b thì làm sao chứng minh được a \(\ge\) b hả bạn
Chúc bn học tốt!!
Ta có:
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Leftrightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)=3^{32}-1\)
\(\Leftrightarrow A=\frac{2A}{2}=\frac{3^{32}-1}{2}< B=3^{32}-1\)
Vậy A<B
\(\text{ (a+1)^2 - (a-1)^2 - 3(a+1)(a-1)}\)
\(=a^2+2a+1-a^2+2a-1-3a^2+3\)
\(=-3a^2+4a+3\)
Theo t thì điều kiện thế này:\(-1< a,b,c< 1\)
Vì \(a+b+c=0;-1< a,b,c< 1\) nên trong các số a,b,c thì tồn tại 2 số có cùng dấu.Giả sử \(a>0;b>0;c< 0\)
\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)
Do \(a+b+c=0;-1< a,b,c< 1\) nên:\(a^2+b^2+c^2< \left|a\right|+\left|b\right|+\left|c\right|\)
\(\Rightarrow a^2+b^2+c^2< a+b-z\)
\(\Rightarrow a^2+b^2+c^2< -2z< 2\)
\(\Rightarrowđpcm\)
+)a>1
\(\Leftrightarrow a\cdot a>1\cdot a\left(a>0\right)\)
\(\Leftrightarrow a^2>a\)
+)\(0< a< 1\)
\(\Leftrightarrow a\cdot a< 1\cdot a\left(a>0\right)\)
\(\Leftrightarrow a^2< a\)
a>1 => không cần (a>0; thừa)