Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10A=10*\(\frac{10^{2006}+1}{10^{2007}+1}\) 10B=10*\(\frac{10^{2007}+1}{10^{2008}+1}\)
10A=\(\frac{10^{2007}+1+9}{10^{2007}+1}\) 10B=\(\frac{10^{2008}+1+9}{10^{2008}+1}\)
10A=1+\(\frac{9}{10^{2007}+1}\) 10B=1+\(\frac{9}{10^{2008}+1}\)
Vì \(\frac{9}{10^{2007}+1}\)>\(\frac{9}{10^{2008}+1}\)=>1+\(\frac{9}{10^{2007}+1}\)>1+\(\frac{9}{10^{2008}+1}\)
Nên 10A>10B=>A>B
Ta có: \(A=\frac{10^{2006}+1}{10^{2007}+1}\)
\(=>10A=\frac{10^{2007}+10}{10^{2007}+1}=\frac{10^{2007}+1+9}{10^{2007}+1}=\frac{10^{2007}+1}{10^{2007}+1}+\frac{9}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)
\(B=\frac{10^{2007}+1}{10^{2008}+1}\)
\(=>10B=\frac{10^{2008}+10}{10^{2008}+1}=\frac{10^{2008}+1+9}{10^{2008}+1}=\frac{10^{2008}+1}{10^{2008}+1}+\frac{9}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)
Vì \(10^{2007}+1< 10^{2008}+1=>\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}=>1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}=>10A>10B=>A>B\)
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
a) Ta có : (1/16)10 = [(1/2)4]10 = (1/2)40
Vì (1/2)40 < (1/2)50 nên (1/16)10 < (1/2)50
b) Ta có : 430 = ( 2 . 2)30 = 230 . 230 = (22)15 . (23)10 > 315 . 810 > 3 . 310 .810 = 3 . (3 . 8)10 = 3 .2410
Vậy nên 230 + 330 + 430 > 2410 . 3
Mình chỉ giải thế thôi, còn đâu bn tự làm tiếp