Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{10\left(4-\sqrt{15}\right)}+\sqrt{6\left(4-\sqrt{15}\right)}\)
\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)
\(=5-\sqrt{15}+\sqrt{15}-3\)
\(=2\)
b) \(2\left(\sqrt{10}-\sqrt{2}\right)\left(4+\sqrt{6-2\sqrt{5}}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{5}-1\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=6\sqrt{10}+2\sqrt{50}-6\sqrt{2}-2\sqrt{10}\)
\(=6\sqrt{10}+10\sqrt{2}-6\sqrt{2}-2\sqrt{10}\)
\(=4\sqrt{10}+4\sqrt{2}\)
c) \(\left(\sqrt{7}+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=7\sqrt{7}-7\sqrt{2}+\sqrt{98}-\sqrt{28}\)
\(=7\sqrt{7}-7\sqrt{2}+7\sqrt{2}-2\sqrt{7}\)
\(=5\sqrt{7}\)
d) \(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)
\(=\sqrt{\dfrac{289+42\sqrt{2}}{16}}\)
\(=\dfrac{\sqrt{289+42\sqrt{2}}}{\sqrt{4^2}}\)
\(=\dfrac{\sqrt{\left(1+12\sqrt{2}\right)^2}}{4}\)
\(=\dfrac{1+12\sqrt{2}}{4}\)
e) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{147}-\sqrt{63}+7-\sqrt{21}\)
\(=7\sqrt{3}-\sqrt{63}+7-\sqrt{21}\)
f) bạn xem đề lại nhé
mik làm bài này
linh tinh
bn ơi
cho mik
xin 1 L-I-K-E
b,
d,
\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
\(=\frac{2}{\sqrt{5}-2}-\frac{2}{2+\sqrt{5}}\)
\(=\frac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}\)
\(=2\sqrt{5}+4-2\sqrt{5}+4\)
\(=8\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
a) Ta có: \(\sqrt{96}\cdot\sqrt{125}\)
\(=\sqrt{16}\cdot\sqrt{6}\cdot\sqrt{25}\cdot\sqrt{5}\)
\(=20\cdot\sqrt{30}\)
b) Ta có: \(\sqrt{a^4\cdot6^5}\)
\(=a^2\cdot36\cdot\sqrt{6}\)
c) Ta có: \(\sqrt{a^6\cdot b^{11}}\)
\(=\sqrt{a^6}\cdot\sqrt{b^{11}}\)
\(=\left|a^3\right|\cdot\left|b^5\right|\cdot\sqrt{b}\)
\(=a^3b^5\cdot\sqrt{b}\)
d) Ta có: \(\sqrt{a^3\left(1-a\right)^4}\)
\(=\sqrt{a^3}\cdot\sqrt{\left(1-a\right)^4}\)
\(=a\sqrt{a}\cdot\left(1-a\right)^2\)
a, \(5\sqrt{\left(-2\right)^4}=5\sqrt{2^4}=5.2^2=5.4=20\)
b, \(-4\sqrt{\left(-3\right)^6}=-4\sqrt{3^6}=-4.3^3=-4.27=-108\)
c,\(\sqrt{\sqrt{\left(-5\right)^8}}=\sqrt{\sqrt{5^8}}=\sqrt{5^4}=5^2=25\)
d ,\(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\)
\(=2\sqrt{5^6}+3\sqrt{2^8}\)
=\(2.5^3+3.2^4=2.125+3.16=298\)
a) \(5\sqrt{\left(-2\right)^4}\) \(=5\left|\left(-2\right)^2\right|=5.4=20\)
b) \(-4\sqrt{\left(-3\right)^6}=-4\left|\left(-3\right)^3\right|=-4.27=-108\)
c) \(\sqrt{\sqrt{\left(-5\right)^8}}=\left|\left(-5\right)^4\right|=5^4=625\)
d) \(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\) \(=2\left|\left(-5\right)^3\right|+3\left|\left(-2\right)^4\right|\)
\(=-2.\left(-125\right)+3.16\)
\(= 250 + 48 = 298\)