Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=\dfrac{x\left(x-1\right)-y\left(x-1\right)}{x\left(y-1\right)-y\left(y-1\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x-y\right)\left(y-1\right)}=\dfrac{x-1}{y-1}\)
2: \(=\dfrac{\left(x-2\right)^2}{\left(x+5\right)\left(x-2\right)}=\dfrac{x-2}{x+5}\)
3: \(=\dfrac{\left(x-2y\right)^2}{y\left(x-2y\right)}=\dfrac{x-2y}{y}\)
4: \(=\dfrac{x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x+3}\)
5: \(=\dfrac{x\left(x-y\right)}{3\left(x-y\right)\left(x+y\right)}=\dfrac{x}{3\left(x+y\right)}\)
lỡ tay bấm -_-; tiếp
F = \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2+\frac{1}{8}\)
Để F nhỏ nhất thì \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2\)nhỏ nhất=>\(\left(\sqrt{2}.y-\frac{1}{8}\right)^2=0\)
=> GTNN của F là 1/8 vs y= \(\frac{\sqrt{2}}{16}\)
bạn không cho \(x,y\)như thế nào thì tính sao được . Xem lại đề đi
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
\(1,\\ a,=x^2+2xy+y^2\\ b,=x^2-4xy+4y^2\\ c,=x^2y^4-1\\ d,=\left[\left(x-y\right)\left(x+y\right)\right]^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\\ 2,\\ a,=\left(x+2\right)^2\\ b,=\left(3x-2\right)^2\\ c,=\left(\dfrac{x}{2}+1\right)^2\\ d,=\left(x+y-2\right)^2\)
Học tốt <3
x(3x-1)+(9x-5)(x-2)=3x2-x+9x(x-2)-5(x-2)=3x2-x+9x2-18x-5x+10=12x2-22x+10
a)4x2+12xy+9y2= (2x)2+2.2x.3y+(3y)2=(2x+3y)2
b)y2+1-2y= y2-2.y.1+12=(y-1)2
1: \(=\dfrac{x\left(x-1\right)-y\left(x-1\right)}{x\left(y-1\right)-y\left(y-1\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x-y\right)\left(y-1\right)}=\dfrac{x-1}{y-1}\)
2: \(=\dfrac{\left(x-2\right)^2}{\left(x+5\right)\left(x-2\right)}=\dfrac{x-2}{x+5}\)
3: \(=\dfrac{\left(x-2y\right)^2}{y\left(x-2y\right)}=\dfrac{x-2y}{y}\)
4: \(=\dfrac{x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x+3}\)
5: \(=\dfrac{x\left(x-y\right)}{3\left(x-y\right)\left(x+y\right)}=\dfrac{x}{3\left(x+y\right)}\)