Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức: \(ab=\left(a,b\right).\left[a,b\right]\).
Áp dụng ta được:
Có \(120.200=24000\), \(BCNN\left(120,200\right)=600\)
suy ra \(ƯCLN\left(120,200\right)=\frac{24000}{600}=40\).
Gọi (n + 3,n + 2) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+2⋮d\end{cases}}\Leftrightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> (n + 3, n + 2) = 1
=> ĐPCM
b) Gọi (2n + 3; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
=> \(2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)
Khi d = 2 nhận thấy 2n + 3 \(⋮̸\)2 \(\forall n\)
=> d = 2 loại
=> d = 1
=> ĐPCM
ta có:
300 000 = 3 x 100 000 = 3 x 10 x 10 x 10 x 10 x 10 = 3 x 2 x 5 x 2 x 5 x 2 x 5 x 2 x 5 x 2 x 5