K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

N N* R

chuan chua

30 tháng 8 2017

bạn tiến đạt trả lời chưa chuẩn , tập hợp đó chưa có tên kìa

17 tháng 11 2021

Tập hợp j :v

17 tháng 11 2021

ví dụ zề tập hợp

A={0;1;2;3}->đây là tập hợp các số bé hơn 4

 

23 tháng 10 2021

Ví dụ:

 

-Tập hợp các đồ vật (sách, bút) đặt trên bàn.

 

-Tập hợp học sinh lớp 6A.

 

-Tập hợp các số tự nhiên lớn hơn 7.

 

-Tập hợp các chữ cái trong hệ thống chữ cái Việt Nam.

 

 

23 tháng 10 2021

1.1. Khái niệm tập hợp Tập hợp là một trong các khái niệm cơ bản của Toán học.

Khái niệm tập hợp không được định nghĩa mà chỉ được mô tả qua các ví dụ: Tập hợp các học sinh của một lớp học, tập hợp các cầu thủ của một đội bóng, tập hợp các cuốn sách trên một giá sách, tập hợp các số tự nhiên,... Mụn toán học nghiên cứu các tính chất chung của tập hợp, không phụ thuộc vào tính chất của các đối tượng cấu thành nên tập hợp được xem là cơ sở của Toán học hiện đại, và được gọi là lí thuyết tập hợp.

Khác với nhiều ngành Toán học khác mà sự phát triển là kết quả có được từ những cố gắng không mệt mỏi của nhiều tài năng toán học, cuộc đấu tranh với “vô cực” và tiếp theo đó, sự sáng tạo nên lí thuyết tập hợp là công trình của chỉ một người: Gioócgiơ − Căngtơ (Georg Cantor 1845 − 1918), nhà toán học Đức gốc Do Thái

. Các đối tượng cấu thành một tập hợp được gọi là các phần tử của tập hợp đó. Người ta thường kí hiệu các tập hợp bởi các chữ A, B, C, X, Y, Z,... và các phần tử của tập hợp bởi các chữ a, b, c, x, y, z, ...

Nếu a là một phần tử của tập hợp A thì ta viết a A (đọc là a thuộc tập hợp A). Nếu a không phải là một phần tử của tập hợp A thì ta viết a A (đọc là a không thuộc tập hợp A). Có hai cách xác định một tập hợp: z Cách thứ nhất là liệt kê tất cả các phần tử của tập hợp. Tập hợp A gồm bốn số tự nhiên 1, 3, 5, 7 được viết là: A = {1, 3, 5, 7}.

Tập hợp B gồm ba phần tử là các chữ a, b, c được viết là: B = {a, b, c}. z Cách thứ hai là nêu lên một tính chất chung của các phần tử của tập hợp, nhờ đó có thể nhận biết được các phần tử của tập hợp và các đối tượng không phải là những phần tử của nó. Chẳng hạn,

Ví dụ 1.1 : Cho tập hợp C các ước số của 8. Khi đó, các số 1, 2, 4, 8 là những phần tử của C, còn các số 3, 5, 6, 13 không phải là những phần tử của C. Người ta thường viết: C = {x : x là ước số của 8}, 

9 tháng 11 2016

Tập hợp ko có phần tử :

A= { } hay A = rỗng

 Tập hợp vô số phần tử là :

B = { 1;2;3;4;5;6;7;8;.......}

knha

9 tháng 11 2016

VD 1: { x thuộcN / x+7=0}

VD 2 :{ x thuộc N / 0:x=0}

kik tui nha

26 tháng 6 2017

P = { 1 ;3 ; 6 ; 9 ; }

1\(\in\)P

\(\notin\)P

26 tháng 6 2017

A = { 1,2,3,4,5,6,7,8,9Ư}

1 thuộc A

18 không thuộc A

14 tháng 7 2019

Cách 1 : Liệt kê phần tử

VD : Tập hợp A  các STN < 3 : A = { 0 ; 1 ; 2 ; 3}

Cách 2 : Viết tính chất đặc trưng của các phần tử:

VD : A = { x \(\in\)N| x < 3}

Cách 3 : dùng hình vẽ :

* Tia số :  0 1 2 3 ...

* Hình :  0 1 2 3 A= {0;1;2;3}

2 tháng 8 2021

Hai ví dụ về hai số có ƯCLN bằng 1 mà cả hai đều là hợp số:

4 và 9

8 và 27

k cho mk lm ơn

Có nhiều ví dụ về hai số có ƯCLN bằng 1 mà cả hai đều là hợp số, chẳng hạn ta có hai ví dụ sau:

+) 6 và 35

Vì hai số này không có thừa số nguyên tố chung nên ƯCLN bằng 1 nhưng 6 chia hết cho 2 nên 6 là hợp số; 35 chia hết cho 5 nên 35 là hợp số.

+) 10 và 27

Vì hai số này không có thừa số nguyên tố chung nên ƯCLN bằng 1 nhưng 10 chia hết cho 2 nên 10 là hợp số; 27 chia hết cho 3 nên 27 là hợp số.

26 tháng 11 2018

có ai hok bài này chưa?