Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left\{0;1;2;3;...;13\right\}\)
b) Ta có: \(x^2+3x-9=0\)
\(\Leftrightarrow\left(x-\frac{-3+3\sqrt{5}}{2}\right)\left(x+\frac{3+3\sqrt{5}}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-3+3\sqrt{5}}{2}\\x=\frac{-3-3\sqrt{5}}{2}\end{cases}}\)
c) \(C=\left\{-7;-6;-5;...;5;6;7\right\}\)
a) \(A = \{ 3;2;1;0; - 1; - 2; - 3; -4; ...\} \)
Tập hợp B là tập các nghiệm nguyên của phương trình \(\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\)
Ta có:
\(\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right.\end{array} \right.\end{array}\)
Vì \(\frac{5}{3} \notin \mathbb Z\) nên \(B = \left\{ { - 3;0;1} \right\}\).
b) \(A \cap B = \left\{ {x \in A|x \in B} \right\} = \{ - 3;0;1\} = B\)
\(A \cup B = \) {\(x \in A\) hoặc \(x \in B\)} \( = \{ 3;2;1;0; - 1; - 2; - 3;...\} = A\)
\(A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{ - 3;0;1\} = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\} \)
a) A={-16; -13; -10; -7; -4; -1; 2; 5; 8}
b) B={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
c) C={-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2}
\(x^2+2\left(m-3\right)x-4m+8=0\) (1)
\(\Leftrightarrow x^2-6x+8+2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)+2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4+2m\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\)
Vậy \(Y=\left\{2;-2m+4\right\}\)
Xét pt \(x^2+4x-2m+10=0\left(2\right)\)
a/ Để \(X\cup Y\)có đúng 4 phần tử \(\Leftrightarrow\) (1) và (2) đều có 2 nghiệm pb và ko có nghiệm chung
\(\Leftrightarrow\left\{{}\begin{matrix}-2m+4\ne2\\\Delta'_{\left(2\right)}=4-\left(-2m+10\right)>0\\2^2+4.2-2m+10\ne0\\\left(-2m+4\right)^2+4.\left(-2m+4\right)-2m+10\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m>3\\m\ne11\\\left\{{}\begin{matrix}m\ne\frac{7}{2}\\m\ne3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>3\\m\ne\left\{\frac{7}{2};11\right\}\end{matrix}\right.\)
b/
Để (1) và (2) có (thể có) 2 nghiệm chung
\(\Rightarrow\left\{{}\begin{matrix}2m-6=4\\-4m+8=-2m+10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=5\\m=-1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)
Vậy (1) và (2) luôn có tối đa 1 nghiệm chung
Để (2) có nghiệm \(\Rightarrow\Delta'_{\left(2\right)}\ge0\Rightarrow m\ge3\)
\(X\cap Y\) có 1 phần tử khi và chỉ khi (1) và (2) có 1 nghiệm chung \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2m+4\end{matrix}\right.\) là nghiệm của (2)
TH1: \(x=2\) là nghiệm của (2)
\(\Rightarrow2^2+4.2-2m+10=0\)
\(\Leftrightarrow m=11\)
TH2: \(x=-2m+4\) là nghiệm của (2)
\(\Leftrightarrow\left(-2m+4\right)^2+4\left(-2m+4\right)-2m+10=0\)
\(\Leftrightarrow4m^2-26m+42=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=\frac{7}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=11\\m=3\\m=\frac{7}{2}\end{matrix}\right.\)
\(x^4-3x^3-5x^2+12x+4=0\)
\(\Leftrightarrow x^4-2x^3-x^3+2x^2-7x^2+14x-2x+4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-x^2-7x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-3x-1\right)=0\)
mà x là số hữu tỉ
nên x=2 hoặc x=-2
=>A={2;-2}
b: \(x^3+x^2-3x-2=0\)
\(\Leftrightarrow x^3+2x^2-x^2-2x-x-2=0\)
=>(x+2)(x^2-x-1)=0
mà x là số hữu tỉ
nên x=-2
=>B={-2}
c: \(\Leftrightarrow x^4-x^3-x^3+x^2-4x^2+4x-2x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-2\right)=0\)
mà x là số hữu tỉ
nên x=1 hoặc x=-1
=>C={1;-1}
1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}
Ta có:
(9-x2)(x2-3x+2)=0
⇔\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)
⇒B={-3;1;2;3}
2/ Có 15 tập hợp con có 2 phần tử