
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(1)2^8:2^4+3^2\cdot3=2^4+3^3=16+27=43\)
\(2)3^{24}:3^{21}+2^2\cdot2^3=3^3+2^5=27+32=59\)
\(3)5^9:5^7+12\cdot3+7^0=5^2+36+1=25+37=62\)
\(4)5^6:5^4+3^2-2021^0=5^2+3^2-1=25+9-1=33\)
\(5)3^{19}:3^{16}+5^2\cdot2^3-1^{2021}=3^3+25\cdot8-1=27+200-1=226\)
\(6)3^6:3^5+2\cdot2^3+2021^0=3^1+2^4+1=3+16+1=20\)

1: \(1026-\left\lbrack\left(3^4+1\right):41\right\rbrack\)
\(=1026-82:41\)
=1026-2
=1024
\(2^{11}:\left\lbrace1026-\left\lbrack\left(3^4+1\right):41\right\rbrack\right\rbrace\)
\(=2^{11}:2^{10}=2\)
2: \(250:\left\lbrace1500:\left\lbrack4\cdot5^3-2^3\cdot25\right\rbrack\right\rbrace\)
\(=250:\left\lbrace1500:\left\lbrack4\cdot125-8\cdot25\right\rbrack\right\rbrace\)
\(=250:\left\lbrace1500:\left\lbrack500-200\right\rbrack\right\rbrace=250:\frac{1500}{3}=250:500=0,5\)
3: \(12+3\cdot\left\lbrace90:\left\lbrack39-\left(2^3-5\right)^2\right\rbrack\right\rbrace\)
\(=12+3\cdot\left\lbrace90:\left\lbrack39-\left(8-5\right)^2\right\rbrack\right\rbrace\)
\(=12+3\cdot\left\lbrace90:\left\lbrack39-3^2\right\rbrack\right\rbrace\)
\(=12+3\cdot\left\lbrace90:\left\lbrack39-9\right\rbrack\right\rbrace\)
\(=12+3\cdot\left\lbrace90:30\right\rbrace=12+3\cdot3=21\)
4: \(24:\left\lbrace390:\left\lbrack500-\left(5^3+49\cdot5\right)\right\rbrack\right\rbrace\)
\(=24:\left\lbrace390:\left\lbrack500-\left(125+245\right)\right\rbrack\right\rbrace\)
\(=24:\left\lbrace390:\left\lbrack500-125-245\right\rbrack\right\rbrace\)
\(=24:\left\lbrace390:\left\lbrack375-245\right\rbrack\right\rbrace\)
\(=24:\left\lbrace390:130\right\rbrace=\frac{24}{3}=8\)
5: \(117:\left\lbrace\left\lbrack79-3\cdot\left(3^3-17\right)\right\rbrack:7+2\right\rbrace\)
\(=117:\left\lbrace\left\lbrack79-3\cdot\left(27-17\right)\right\rbrack:7+2\right\rbrace\)
\(=117:\left\lbrace\left\lbrack79-3\cdot10\right\rbrack:7+2\right\rbrace\)
\(=117:\left\lbrace49:7+2\right\rbrace=\frac{117}{9}=13\)
6: \(514-4\cdot\left\lbrace\left\lbrack40+8\left(6-3\right)^2\right\rbrack-12\right\rbrace\)
\(=514-4\cdot\left\lbrace\left\lbrack40+8\cdot3^2\right\rbrack-12\right\rbrace\)
\(=514-4\cdot\left\lbrace\left\lbrack40+8\cdot9\right\rbrack-12\right\rbrace\)
\(=514-4\cdot\left\lbrace112-12\right\rbrace\)
\(=514-4\cdot100=514-400=114\)
7: \(25\cdot\left\lbrace32:\left\lbrack\left(12-4\right)+4\cdot\left(16:2^3\right)\right\rbrack\right\rbrace\)
\(=25\cdot\left\lbrace32:\left\lbrack8+4\cdot2\right\rbrack\right\rbrace\)
\(=25\cdot\left\lbrace32:16\right\rbrace=25\cdot2=50\)
8: \(30:\left\lbrace175:\left\lbrack355-\left(135+37\cdot5\right)\right\rbrack\right\rbrace\)
\(=30:\left\lbrace175:\left\lbrack355-\left(135+185\right)\right\rbrack\right\rbrace\)
\(=30:\left\lbrace175:\left\lbrack355-320\right\rbrack\right\rbrace=30:\left\lbrace175:35\right\rbrace=\frac{30}{5}=6\)
9: \(32:\left\lbrace160:\left\lbrack300-\left(175+21\cdot5\right)\right\rbrack\right\rbrace\)
\(=32:\left\lbrace160:\left\lbrack300-\left(175+105\right)\right\rbrack\right\rbrace\)
\(=32:\left\lbrace160:\left\lbrack300-280\right\rbrack\right\rbrace\)
\(=32:\left\lbrace160:20\right\rbrace=\frac{32}{8}=4\)
10: \(750:\left\lbrace130-\left\lbrack\left(5\cdot14-65\right)^3+3\right\rbrack\right\rbrace\)
\(=750:\left\lbrace130-\left\lbrack\left(70-65\right)^3+3\right\rbrack\right\rbrace\)
\(=750:\left\lbrace130-\left\lbrack5^3+3\right\rbrack\right\rbrace\)
\(=750:\left\lbrace130-128\right\rbrace=750:2=375\)

20.
4^n=256
4^n=4^4
n=4
9^5n-8=81
9^5n-8=9^2
5n-8=2
5n=10
n=2
3^n+2:27=3
3^n+2:3^3=3
3^n+2-3=3
n+2-3=1
n=2
8^n+2.2^3=8^5
8^n+2.8=8^5
8^n+2+1=8^5
n+2+1=5
n=2
21.
30-2x^2=12
2x^2=30-12
2x^2=18
x^2=9
x^2=3^2
x=3
(9-2x)^3=125
(9-2x)^3=5^3
(9-2x)=5
2x=4
x=2
(2x-2)^4=0
(2x-2)=0
2x=2
x=1
(x+5)^3=(2x)^3
x+5=2x
x+5-2x=0
(x-2x)=-5
-x=-5
x=5
20:
a: \(4^{n}=256\)
=>\(4^{n}=4^4\)
=>n=4
b: \(9^{5n-8}=81\)
=>\(9^{5n-8}=9^2\)
=>5n-8=2
=>5n=10
=>n=2
c: \(3^{n+2}:27=3\)
=>\(3^{n+2}=27\cdot3=81=3^4\)
=>n+2=4
=>n=2
d: \(8^{n+2}\cdot2^3=8^5\)
=>\(8^{n+2}=8^5:8=8^4\)
=>n+2=4
=>n=2
Bài 21:
a: \(30-2x^2=12\)
=>\(2x^2=30-12=18\)
=>\(x^2=9\)
mà x>=0(do x là số tự nhiên)
nên x=3
b: \(\left(9-2x\right)^3=125\)
=>9-2x=5
=>2x=4
=>x=2
c: \(\left(2x-2\right)^4=0\)
=>2x-2=0
=>2x=2
=>x=1
d: \(\left(x+5\right)^3=\left(2x\right)^3\)
=>2x=x+5
=>2x-x=5
=>x=5

20.
a.
\(4^{n}=256\)
\(4^{n}=4^4\)
\(n=4\)
b.
\(9^{5n-8}=81\)
\(9^{5n-8}=9^2\)
5n-8=2
5n=10
n=2
c.
\(3^{n+2}:27=3\)
\(3^{n+2}=27.3\)
\(3^{n+2}=81\)
\(3^{n+2}=3^4\)
n+2=4
n=2
d.
\(8^{n+2}.2^3=8^5\)
\(8^{n+2}=8^5:2^3\)
\(8^{n+2}=8^4\)
n+2=4
n=2
21.
a.
\(30-2x^2=12\)
\(2x^2=30-12\)
\(2x^2=18\)
\(x^2=18:2=9\)
\(x^2=3^2\)
\(x=\pm3\)
b.
\(\left(9-2x\right)^3=125\)
\(\left(9-2x\right)^3=5^3\)
\(9-2x=5\)
2x=9-5=4
x=2
c.
\(\left(2x-2\right)^4=0\)
2x-2=0
2x=2
x=1
d.
\(\left(x+5\right)^3=\left(2x\right)^3\)
x+5=2x
2x-x=5
x=5

a) \(M=1+2+2^2+2^3+\cdots+2^{100}\)
\(2M=2+2^2+2^3+2^4+\cdots+2^{101}\)
\(2M-M=\left(2+2^2+2^3+2^4+\cdots+2^{101}\right)-\left(1+2+2^2+2^3+\cdots+2^{100}\right)\)
\(\Rightarrow M=2^{101}-1\)
Vậy \(M=2^{101}-1\)
b) \(N=1+3^2+3^4+3^6+\cdots+3^{100}\)
\(3N=3+3^2+3^4+3^6+3^8+\cdots+3^{102}\)
\(3N-N=\left(3+3^2+3^4+3^6+3^8+\cdots+3^{102}\right)-\left(1+3+3^2+3^4+3^6+\cdots+3^{100}\right)\)
\(\Rightarrow2N=3^{102}-1\)
\(\Rightarrow N=\frac{3^{102}-1}{2}\)
Vậy \(N=\frac{3^{102}-1}{2}\)
c) \(P=1+5^3+5^6+5^9+\cdots+5^{99}\)
\(5^3\cdot P=5^3+5^6+5^9+5^{12}\cdots+5^{102}\)
\(125P-P=\left(5^3+5^6+5^9+5^{12}\cdots+5^{102}\right)-\left(1+5^3+5^6+5^9+\cdots+5^{99}\right)\)
\(\Rightarrow124P=5^{102}-1\)
\(\Rightarrow P=\frac{5^{102}-1}{124}\)
Vậy \(P=\frac{5^{102}-1}{124}\)
a: \(M=1+2+2^2+\cdots+2^{100}\)
=>\(2M=2+2^2+2^3+\cdots+2^{101}\)
=>\(2M-M=2+2^2+2^3+\cdots+2^{101}-1-2-\cdots-2^{100}\)
=>\(M=2^{101}-1\)
b: \(N=1+3^2+3^4+\cdots+3^{100}\)
=>\(9N=3^2+3^4+3^6+\cdots+3^{102}\)
=>\(9N-N=3^2+3^4+\cdots+3^{102}-1-3^2-\cdots-3^{100}\)
=>\(8N=3^{102}-1\)
=>\(N=\frac{3^{102}-1}{8}\)
c: \(P=1+5^3+5^6+\cdots+5^{99}\)
=>\(125P=5^3+5^6+5^9+\cdots+5^{102}\)
=>\(125P-P=5^3+5^6+\cdots+5^{102}-1-5^3-\cdots-5^{99}\)
=>\(124P=5^{102}-1\)
=>\(P=\frac{5^{102}-1}{124}\)

a: \(M=1+2+2^2+\cdots+2^{100}\)
=>\(2M=2+2^2+2^3+\cdots+2^{101}\)
=>\(2M-M=2+2^2+2^3+\cdots+2^{101}-1-2-\cdots-2^{100}\)
=>\(M=2^{101}-1\)
b: \(N=1+3^2+3^4+\cdots+3^{100}\)
=>\(9N=3^2+3^4+3^6+\cdots+3^{102}\)
=>\(9N-N=3^2+3^4+\cdots+3^{102}-1-3^2-\cdots-3^{100}\)
=>\(8N=3^{102}-1\)
=>\(N=\frac{3^{102}-1}{8}\)
c: \(P=1+5^3+5^6+\cdots+5^{99}\)
=>\(125P=5^3+5^6+5^9+\cdots+5^{102}\)
=>\(125P-P=5^3+5^6+\cdots+5^{102}-1-5^3-\cdots-5^{99}\)
=>\(124P=5^{102}-1\)
=>\(P=\frac{5^{102}-1}{124}\)
1: \(3^2\cdot5^3+9^2\)
\(=9\cdot125+81\)
=1125+81
=1206
2: \(55+45:3^2\)
\(=55+45:9\)
=55+5
=60
3: \(8^3:4^2-5^2=64:16-25=4-25=-21\)
4: \(5\cdot3^2-32:2^2=5\cdot9-32:4=45-8=37\)
5: \(16:2^3+5^2\cdot4=16:8+25\cdot4\)
=2+100
=102
6: \(5\cdot2^2-18:3^2\)
\(=5\cdot4-18:9\)
=20-2
=18
7: \(3\cdot5^2-15\cdot2^2=3\cdot25-15\cdot4=75-60=15\)
8: \(2^3\cdot6-72:3^2=8\cdot6-72:9=48-8=40\)
9: \(5\cdot2^2-27:3^2\)
\(=5\cdot4-27:9\)
=20-3
=17
10: \(3\cdot2^4+81:3^2=3\cdot16+81:9=48+9=57\)
11: \(4\cdot5^3-32:2^5=4\cdot125-32:32=500-1=499\)
12: \(6\cdot5^2-32:2^4=6\cdot25-32:16=150-2=148\)