\(\sqrt{2}+1\)                             b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cách dựng. Giả sử đoạn thẳng đã cho là ABAB

  • Dựng CC nằm trên tia đối tia ABAB sao cho AC=1AC=1
  • Vẽ đường tròn (ω)(ω) đường kính BCBC
  • Dựng dBCd⊥BC
  • E(ω)dE∈(ω)∩d

Khi đó, AEAE là đoạn thẳng có độ dài aa cần dựng

Chứng minh. Vì E(ω)E∈(ω) nên EBC△EBC vuông ở EE, mà EABC(ABC)EA⊥BC(A∈BC) nên AE=AC.AB=aAE=AC.AB=a, thỏa mãn

 bn vào đây thử: Dựng đoạn thẳng dựa vào đoạn thẳng cho trước - Hình học - Diễn đàn Toán học

bó tay!! 3645764576657567568587876869789685745745787676957856

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

11 tháng 8 2020

A= \(\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{\sqrt{b}}{\sqrt{a}.\sqrt{a}-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-\sqrt{b}.\sqrt{b}}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)

A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{a}.\sqrt{a}.\sqrt{b}-\sqrt{b}.\sqrt{b}\sqrt{a}\right)\)

A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right)\)

A = b-a

B = \(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-1}\)

B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}\left(a+\sqrt{a}\right)}{a^2-a}\right).\frac{a-1}{\sqrt{a}+1}\)

B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}.\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

\(B=\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}-\frac{a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

B= \(\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)-a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

B= \(\left(\frac{\left(\sqrt{a}+1\right)\left(a\sqrt{a}-a\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)

B = \(\frac{\left(\sqrt{a}+1\right)a\left(\sqrt{a}-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)

\(B=\frac{a\left(\sqrt{a}^2-1^2\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)

\(B=\frac{a\left(a-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)

B = \(\frac{a-1}{\sqrt{a}+1}\)

15 tháng 7 2018

bài 2 rút gọn :

a) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)

= \(\left|1-\sqrt{2}\right|+\left|\sqrt{2}-3\right|\)

=\(\sqrt{2}-1+3-\sqrt{2}\)

=2

b) \(\sqrt{4-2\sqrt{3}}+\sqrt{7}-\sqrt{48}\)

= \(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{7}-4\sqrt{3}\)

= \(\sqrt{3}-1+\sqrt{7}-4\sqrt{3}\)

= \(\sqrt{7}-3\sqrt{3}+1\)

c)

15 tháng 7 2018

Help mee <3

NV
17 tháng 6 2019

\(a\sqrt{b}-b\sqrt{a}=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)

\(7\sqrt{7}+3\sqrt{3}=\left(\sqrt{7}+\sqrt{3}\right)\left(7-\sqrt{21}+3\right)=\left(\sqrt{7}+\sqrt{3}\right)\left(10-\sqrt{21}\right)\)

\(a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\)

\(1-a\sqrt{a}=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)\)

\(x^2-\sqrt{x}=\sqrt{x}\left(x\sqrt{x}-1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)

\(\left(\sqrt{2}+1\right)^2-4\sqrt{2}=\left(\sqrt{2}-1\right)^2\)

\(\left(\sqrt{5}+2\right)^2-8\sqrt{5}=\left(\sqrt{5}-2\right)^2\)

2 cái trên đều áp dụng HĐT \(\left(a+b\right)^2-4ab=\left(a-b\right)^2\)

\(5\sqrt{2}-2\sqrt{5}=\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)\)

Bài 1: 

a: \(=\sqrt{32.4}=\dfrac{9}{5}\sqrt{10}\)

b: \(=\sqrt{5\cdot5\cdot7\cdot7\cdot11\cdot11}=5\cdot7\cdot11=385\)

c: \(=5-2\sqrt{6}\)

d: \(=18-1=17\)

e: \(=3\sqrt{2}-2\sqrt{3}+7\sqrt{3}-7\sqrt{2}=-4\sqrt{2}+5\sqrt{3}\)

13 tháng 8 2017

A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\) 

=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)