Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a)
\(3x^2-5x+1=2x-3\)
\(\Leftrightarrow 3x^2-5x+1-2x+3=0\)
\(\Leftrightarrow 3x^2-7x+4=0\) (\(a=3; b=-7; c=4)\)
b)
\(\frac{3}{5}x^2-4x-3=3x+\frac{1}{3}\)
\(\Leftrightarrow \frac{3}{5}x^2-4x-3-3x-\frac{1}{3}=0\)
\(\Leftrightarrow \frac{3}{5}x^2-7x-\frac{10}{3}=0(a=\frac{3}{5};b=-7; c=\frac{-10}{3})\)
c)
\(\Leftrightarrow -\sqrt{3}x^2+x-5-\sqrt{3}x-\sqrt{2}=0\)
\(\Leftrightarrow -\sqrt{3}x^2+(1-\sqrt{3})x-(5+\sqrt{2})=0\)
(\(a=-\sqrt{3}; b=1-\sqrt{3}; c=-(5+\sqrt{2}))\)
d)
\(\Leftrightarrow x^2-5(m+1)x+m^2-2=0\)
(\(a=1;b=-5(m+1); c=m^2-2)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a:
\(\text{Δ}=\left(2m\right)^2-4\left(-3m-2\right)\)
\(=4m^2+12m+8\)
Để PT có 2 nghiệm thì \(m^2+3m+2>=0\)
=>m>=-1 hoặc m<=-2
THeo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m-2\end{matrix}\right.\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\2x_1-3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=-4m\\2x_1-3x_2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-4m-1}{5}\\x_1=-2m+\dfrac{4m+1}{5}=\dfrac{-6m+1}{5}\end{matrix}\right.\)
Ta có: \(x_1x_2=-3m-2\)
\(\Leftrightarrow\left(4m+1\right)\left(6m-1\right)=25\left(-3m-2\right)\)
\(\Leftrightarrow24m^2-4m+6m-1=-75m-50\)
\(\Leftrightarrow24m^2+77m+49=0\)
\(\text{Δ}=77^2-4\cdot24\cdot49=1225>0\)
Do đó: PT có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{-77-35}{48}=\dfrac{-7}{3}\left(nhận\right)\\m_2=\dfrac{-77+35}{48}=-\dfrac{7}{8}\left(loại\right)\end{matrix}\right.\)
b: \(\text{Δ}=\left(4m\right)^2-4\left(4m^2-m\right)=16m^2-16m^2+4m=4m\)
Để PT có hai nghiệm thì 4m>=0
hay m>=0
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1=3x_2\\x_1+x_2=4m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_2=4m\\x_1=3x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=m\\x_1=3m\end{matrix}\right.\)
Ta có: \(x_1x_2=4m^2-m\)
\(\Leftrightarrow4m^2-m=3m^2\)
\(\Leftrightarrow m\left(m-1\right)=0\)
=>m=0 hoặc m=1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 5x2 + 2x = 4 – x ⇔ 5x2 + 3x – 4 = 0; a = 5, b = 3, c = -4
b) x2 + 2x – 7 = 3x +
⇔
x2 – x -
= 0, a =
, b = -1, c = -
c) 2x2 + x - √3 = √3 . x + 1 ⇔ 2x2 + (1 - √3)x – 1 - √3 = 0
Với a = 2, b = 1 - √3, c = -1 - √3
d) 2x2 + m2 = 2(m – 1)x ⇔ 2x2 - 2(m – 1)x + m2 = 0; a = 2, b = - 2(m – 1), c = m2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(3+\sqrt{2x-3}=x\)
\(\Leftrightarrow\sqrt{2x-3}=x-3\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2x-3=\left(x-3\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\x^2-8x+12=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x=2;x=6\end{cases}}\)
\(\Leftrightarrow x=6\)
b) Ta có: \(F\left(2\right)=a\left(2\right)^3+b.2-1=2009\)
\(\Rightarrow a.\left(2\right)^3+b.2=2009+1=2010\)
Suy ra \(F\left(-2\right)=a.\left(-2\right)^3+b\left(-2\right)-1\)
\(=-\left[a.\left(2\right)^3+b.2\right]-1\)
\(=-\left[2010\right]-1\)
\(=-2011\)
c) Nhẩm thấy x = 1 là nghiệm nên ta phân tách vế trái thành nhân tử có một thừa số là (x -1).
Ta chia đa thức vế trái cho \(x-1\) thì được thương là \(\left(m+1\right)x^2+4mx+4m-1\).
Vậy phương trình tích là:
\(\left(x-1\right)\left[\left(m+1\right)x^2+4mx+4m-1\right]=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) 5 x 2 + 2 x = 4 − x ⇔ 5 x 2 + 2 x + x − 4 = 0 ⇔ 5 x 2 + 3 x − 4 = 0
Phương trình bậc hai trên có a = 5; b = 3; c = -4.
b)
3 5 x 2 + 2 x − 7 = 3 x + 1 2 ⇔ 3 5 x 2 + 2 x − 3 x − 7 − 1 2 = 0 ⇔ 3 5 x 2 − x − 15 2 = 0
c)
2 x 2 + x − 3 = x ⋅ 3 + 1 ⇔ 2 x 2 + x − x ⋅ 3 − 3 − 1 = 0 ⇔ 2 x 2 + x ⋅ ( 1 − 3 ) − ( 3 + 1 ) = 0
Phương trình bậc hai trên có a = 2; b = 1 - √3; c = - (√3 + 1).
d)
2 x 2 + m 2 = 2 ( m − 1 ) ⋅ x ⇔ 2 x 2 − 2 ( m − 1 ) ⋅ x + m 2 = 0
Phương trình bậc hai trên có a = 2; b = -2(m – 1); c = m 2
Kiến thức áp dụng
Phương trình bậc hai một ẩn là phương trình có dạng: ax2 + bx + c = 0
trong đó x được gọi là ẩn; a, b, c là các hệ số và a ≠ 0.