K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
5 tháng 11 2023

Độ lệch pha của hai dao động ở thời điểm t bất kì là: \(\Delta\phi=\left(\omega_2t+\varphi_2\right)-\left(\omega_1t+\varphi_1\right)\)

Vì 2 dao động có cùng chu kì nên \(\omega_1=\omega_2\)

Vậy \(\Delta\phi=\varphi_2-\varphi_1\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

Giả sử hai dao động có phương trình tổng quát là: 

\(\left\{{}\begin{matrix}x_1=A_1cos\left(\omega t+\varphi_1\right)\\x_2=A_2cos\left(\omega t+\varphi_2\right)\end{matrix}\right.\)

Độ lệch pha giữa hai dao động là: \(\Delta\varphi=\left(\omega t+\varphi_2\right)-\left(\omega t+\varphi_1\right)=\varphi_2-\varphi_1\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

Độ lệch pha là đại lượng đặc trưng cho độ lệch về thời gian giữa hai dao động điều hoà cùng chu kì.

Chọn D.

P
Phong
CTVHS
17 tháng 8 2023

- Các điểm dao động với biên độ cực đại là bụng sóng.

- Các điểm không dao động (đứng yên) là nút sóng.

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

Hai dao động có cùng biên độ.

Ở cùng một thời điểm khi dao động 1 ở vị trí cân bằng thì dao động 2 ở vị trí bên và ngược lại.

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

Dao động 1 vẽ với biên độ A và chu kì T

Dao động 2 có cùng chu kì với dao động 1 và biên độ \(A_2=2A\) vị trí đầu tiên của dao động thứ hai bằng \(\dfrac{\sqrt{2}}{2}A_2\) và ở thời điểm \(\dfrac{T}{8}\) thì dao động 2 sẽ đi qua vị trí cân bằng.

Cứ thế tiếp tục vẽ 2 chu kì dao động của hai dao động

Đường màu xanh là dao động thứ nhất, đường màu đỏ là dao động thứ 2

HQ
Hà Quang Minh
Giáo viên
5 tháng 11 2023

a) Vì hai điểm gần nhất trên cùng phương truyền sóng dao động lệch pha nhau một góc \(\dfrac{\pi}{2}\)

Khoảng cách giữa hai điểm là 360cm= \(\dfrac{3\lambda}{2}\) nên hai điểm này dao động ngược pha nhau độ lệch pha của chúng là π

b) Sau 0,1s sóng truyền được khoảng cách là 0,1.330 = 33m = \(\dfrac{55\lambda}{4}\)
Độ lệch pha là \(\dfrac{3\pi}{4}\)

HQ
Hà Quang Minh
Giáo viên
5 tháng 11 2023

a) Dao động 1 (đường màu xanh) có:

- Biên độ: A1 = 3 cm

- Chu kì: T = 6 s

- Tần số: \(f=\dfrac{1}{T}=\dfrac{1}{6}\left(Hz\right)\)

Dao động 2 (đường màu đỏ) có:

- Biên độ: A2 = 4 cm

- Chu kì: T = 6 s

- Tần số: \(f=\dfrac{1}{T}=\dfrac{1}{6}\left(Hz\right)\)

b) Hai dao động có cùng chu kì nên \(\omega=\dfrac{2\pi}{T}=\dfrac{2\pi}{6}=\dfrac{\pi}{3}\left(rad/s\right)\)

Độ lệch thời gian của hai dao động khi cùng trạng thái: \(\Delta t=2,5s\)

Độ lệch pha: \(\Delta\varphi=\omega.\Delta t=\dfrac{\pi}{3}\cdot2,5=150^o\)

HQ
Hà Quang Minh
Giáo viên
5 tháng 11 2023

c) Tại thời điểm 3,5 s vật 2 đang ở VTCB nên vận tốc cực đại:

\(v=\omega A_2=\text{ }\dfrac{\pi}{3}\cdot4=\dfrac{4\pi}{3}\left(cm/s\right)\)

d) Tại thời điểm 1,5 s vật 1 đang ở biên dương nên gia tốc có giá trị:

\(a=-\omega^2A_1=-\dfrac{\pi^2}{9}\cdot3=-\dfrac{\pi^2}{3}\left(cm/s^2\right)\)

Độ lớn gia tốc khi đó là \(\dfrac{\pi^2}{3}cm/s^2\)

19 tháng 8

a. Dựa vào đồ thị ta có:

Chu kì \(T = 2 s\), suy ra tần số góc \(\omega = \frac{2 \pi}{T} = \frac{2 \pi}{2} = \pi\) rad/s

Vận tốc cực đại của dao động: \(\text{v}_{m a x} = \omega A\)

\(\Rightarrow A = \frac{\text{v}_{m a x}}{\omega} = \frac{4}{\pi}\) cm

Thời điểm \(t = 0\), vật có \(\text{v} = \text{v}_{m a x}\), suy ra vật ở VTCB và \(\text{v} > 0\)

Khi đó: \(x = 0 \Rightarrow cos ⁡ \varphi = 0 \Rightarrow \varphi = - \frac{\pi}{2}\)

Phương trình của vận tốc có dạng: \(\text{v} = \omega A cos ⁡ \left(\right. \omega t + \varphi + \frac{\pi}{2} \left.\right)\)

\(\Rightarrow \text{v} = 4 cos ⁡ \left(\right. \pi t - \frac{\pi}{2} + \frac{\pi}{2} \left.\right) = 4 cos ⁡ \left(\right. \pi t \left.\right)\) (cm/s)

b. Phương trình dao động điều hòa có dạng: \(x = A cos ⁡ \left(\right. \omega t + \varphi \left.\right)\)

\(\Rightarrow x = \frac{4}{\pi} cos ⁡ \left(\right. \pi t - \frac{\pi}{2} \left.\right)\) (cm)

Phương trình của gia tốc có dạng: \(a = \omega^{2} A cos ⁡ \left(\right. \omega t + \varphi + \pi \left.\right)\)

\(\Rightarrow a = \pi^{2} . \frac{4}{\pi} cos ⁡ \left(\right. \pi t - \frac{\pi}{2} + \pi \left.\right) = 4 \pi cos ⁡ \left(\right. \pi t + \frac{\pi}{2} \left.\right)\) (cm/s2)