Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
Giả sử (x;p) = 1 thì ta thấy (y,p) = 1
Ta có: \(x^2\equiv-y^2\left(mod\text{ p}\right)\)
\(\Leftrightarrow x^{4k+2}\equiv-y^{4k+2}\left(mod\text{ p}\right)\)
\(\Leftrightarrow1\equiv-1\left(mod\text{ p}\right)\)(Định lí Fermat)
Do đó \(\left(x;p\right)\ne1\Rightarrow x⋮p\)và dễ thấy \(y⋮p\)(Đpmcm)
Vì \(b\in P;b\ne3\)
\(\Rightarrow\orbr{\begin{cases}b\text{≡}2\left(mod3\right)\\b\text{≡}1\left(mod3\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}b^2\text{≡}4\text{≡}1\left(mod3\right)\\b^2\text{≡}1^2\text{≡}1\left(mod3\right)\end{cases}}\)
\(\Rightarrow b^2\text{≡}1\left(mod3\right)\)
\(\Rightarrow1993b^2\text{≡}1993\text{≡}1\left(mod3\right)\)
Lại có \(3x\text{≡}0\left(mod3\right)\)
\(2\text{≡}2\left(mod3\right)\)
\(\Rightarrow A=3x+2+1993b^2\text{≡}0+2+1\text{≡}3\text{≡}0\left(mod3\right)\)
\(x\in N;b>1\Rightarrow A>0+2+1993.2^2>3\)
\(\Rightarrow\)A là hợp số
Vậy ...
b nguyên tố khác 3
áp dụng t/c "bình phương số lẻ luôn có dạng 3k+1" ta có:
nếu b =2 số chắn duy nhất A=3x+2+1993.4 chia hết cho 3
b^2=3k+1
A=3x+2+1993(3k+1)=3x+1993.3k+3 luôn chia hết cho 3 với mọi x tự nhiên => dpcm
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
Gỉa sử a là số nguyên nào đó mà a^2+1 có ước nguyên tố p có dạng 4k+3
=> a^2+1 chia hết cho p => a^4k+2 +1 chia hết cho p (1)
mặt khác theo định lý nhỏ của Fermat ta có a^p-1 -1 chia hết cho p hay a^ak+2 -1 chia hết cho p (2) Từ (1),(2) => 2 chia hết cho p mà số nguyên tố chia hết cho 2 là 2=> p=2. Mâu thuẫn với giả thiết p có dạng 4k+3
=> với mọi số nguyên a thuộc Z không có ướ nguyên tố dạng 4k+3