Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a) Ta có
1033 là số chẵn ; 2 là số chắn
=> 1033+2 là số chẵn
=>1033+2 chia hết cho 2
Mặt khác \(10^{33}+2=100....002\) ( 32 số 0 )
Có tổng chữ số là \(1+0.32+2=3⋮3\)
=>1033+2 chia hết cho 3
b) Ta có
10299 là số chẵn ; 8 là số chắn
=> 10299+8 là số chẵn
=> 10299+8 chia hết cho 2
Mặt khác \(10^{299}+8=100....008\) ( 298 số 0 )
Có tổng chữ số là \(1+0.298+8=9⋮9\)
=>10299+8chia hết cho 9
c)
Ta có
Các số tự nhiên có tận cùng là 1 khi nâng lên lũy thừa cũng luôn có tận cùng là 1
\(\Rightarrow81^{45}+4=\left(\overline{......1}\right)+4=\left(\overline{......5}\right)⋮5\)
\(\Rightarrow81^{45}+4⋮5\)
Câu 2
Ta có
\(A=2\left(1+2\right)+2^3\left(1+2\right)+.....+2^{99}\left(1+2\right)\)
\(\Rightarrow A=2.3+2^3.3+.....+2^{99}.3\)
=> A chia hết cho 3
Mặt khác A chia hết cho 2 vì mọi số hạng của A đều chia hết cho 2
Mà (2;3)=1
=> \(A⋮2.3=6\)
=> A chia hết cho 6
a)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{59}.3\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{58}.7\)
\(=7\left(2+2^4+2^{58}\right)⋮7\)
- \(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{57}.15\)
\(=15\left(2+2^5+2^{57}\right)⋮15\)
b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)
\(=31+5^3.31+...+5^{96}.31\)
\(=31\left(1+5^3+...+5^{96}\right)⋮31\)
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Giao lưu
\(\frac{\left(5^3-5\right)}{8}=\frac{\left(5^3-5^1\right)}{8}=\frac{5^1\left(5^{3-1}-1\right)}{8}=\frac{5.\left(5^2-1\right)}{8}=\frac{5.24}{8}=5.3\)
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)
Ta có:
\(A=1+5+5^2+...+5^{2013}\)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)
\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)
\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)
\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)
Vì \(31⋮31\)
\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)
hay\(A⋮31\) (đpcm)
Này đề là chia hết cho 13 sao lại làm chia hết cho 31 cô mình ra bài này mà
Ta có: 45 + 99 + 180 chia hết cho 9
Vì 45 chia hết cho 9
99 chia hết cho 9
180 chia hết cho 9