K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

\(A=17^{18}-17^{16}\\ =17^{16}\cdot\left(17^2-1\right)\\ =17^{16}\cdot\left(289-1\right)\\ =17^{16}\cdot288\\ =17^{16}\cdot18\cdot16⋮18\)

Vậy \(A⋮18\)

\(B=1+3+3^2+...+3^{11}\)

Ta có: \(52=4\cdot13\)

\(B=1+3+3^2+...+3^{11}\\ =\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\\ =1\cdot\left(1+3\right)+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\\ =\left(1+3\right)\cdot\left(1+3^2+...+3^{10}\right)\\ =4\cdot\left(1+3^2+...+3^{10}\right)⋮4\)

Vậy \(B⋮4\)

\(B=1+3+3^2+...+3^{11}\\ =\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\\ =1\cdot\left(1+3+3^2\right)+3^3\cdot\left(1+3+3^2\right)+...+3^9\cdot\left(1+3+3^2\right)\\ =\left(1+3+3^2\right)\cdot\left(1+3^3+...+3^9\right)\\ =13\cdot\left(1+3^3+...+3^9\right)⋮13\)

Vậy \(B⋮13\)

\(4\)\(13\) là hai số nguyên tố cùng nhau nên tao có \(B⋮4\cdot13\Leftrightarrow B⋮52\)

Vậy \(B⋮52\)

\(C=3+3^3+3^5+...3^{31}\)

\(C=3+3^3+3^5+...+3^{31}\\ =\left(3+3^3\right)+\left(3^5+3^7\right)+...+\left(3^{29}+3^{31}\right)\\ =1\cdot\left(3+3^3\right)+3^4\cdot\left(3+3^3\right)+...+3^{28}\cdot\left(3+3^3\right)\\ =\left(3+3^3\right)\cdot\left(1+3^4+...+3^{28}\right)\\ =30\cdot\left(1+3^4+...+3^{28}\right)⋮15\left(\text{vì }30⋮15\right)\)

Vậy \(C⋮15\)

\(D=2+2^2+2^3+...+2^{60}\)

Tao có: \(21=3\cdot7;15=3\cdot5\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\\ =\left(1+2\right)\cdot\left(2+2^3+...+2^{59}\right)\\ =3\cdot\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(D⋮3\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\\ =2\cdot\left(1+2^2\right)+2^5\cdot\left(1+2^2\right)+...+2^{57}\cdot\left(1+2^2\right)+2^2\cdot\left(1+2^2\right)+...+2^{58}\cdot\left(1+2^2\right)\\ =\left(1+2^2\right)\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)\\ =5\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)⋮5\)

Vậy \(D⋮5\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\\ =2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\cdot\left(1+2+2^2\right)\\ =\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{58}\right)\\ =7\cdot\left(2+2^4+...+2^{58}\right)⋮7\)

Ta có:

\(D⋮3;D⋮5\Rightarrow D⋮3\cdot5\Leftrightarrow D⋮15\)

\(D⋮3;D⋮7\Rightarrow D⋮3\cdot7\Leftrightarrow D⋮21\)

Vậy \(D⋮15;D⋮21\)

26 tháng 6 2017

Mình chỉ làm mẫu 1 câu thui nha:

\(A=17^{18}-17^{16}\)

\(A=17^{16}.17^2-17^{16}.1\)

\(A=17^{16}\left(17^2-1\right)\)

\(A=17^{16}.288\)

\(A=17^{16}.16.18\)

\(A⋮18\left(đpcm\right)\)

29 tháng 10 2020

BANG BO DIT ME

2 tháng 11 2016

Chọn

Giải ra đầy đủ nhá

2 tháng 11 2016

Ôi tr. Ý mk mún nói là giải bài ra cho mình

10 tháng 12 2018

2 + 22 + 23 + ... + 219 + 220 + 221

= ( 2 + 2+ 23 ) + ... ( 219 + 220 + 221 )

= ( 2 + 2+ 23 ) + ..... + 219(2 + 22 + 23 )

= 14  + .... + 219.14

= 14 ( 1 + .... + 219) ⋮ 14 (đpcm)

10 tháng 12 2018

gọi A là tổng 

ta có

A = 2 + 22 + 23 + ... + 221

A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 219 + 220 + 221 )

A = 2 . ( 2 + 22 + 23 ) + 24 . ( 2 + 22 + 23 ) + ... + 219 . ( 2 + 22 + 23 )

A = 2 . 14 + 24 .14 + ... + 219 .14

A = 14 . ( 2 + 24 + ... + 219 )                ( VÌ 14 chia hết cho 14 )

= > A chia hết cho 14

7 tháng 11 2015

Câu a và câu b bài 2 xem Câu hỏi tương tự 
Bài 2 câu c : 
Do A chia hết cho 2 và 5 ( chai hết cho 15 tức là chia hết cho 5 ) 
Mà chia hết cho cả 2 và 5 thì có số tận cùng là 0 
=> Số tận cùng của A = 0. 
Bài 1 để nghiên cứu

Bài 1:

 ta có 3^3 = 27 chia 13 dư 1

=> (3^3)^670 = 3^ 2010 chia 13 dư 1 (1) 
5^2 = 25 chia 13 dư (-1)

=> (5^2)^1005 chia 13 dư (-1)^ 1005 = (-1) (2) 
Từ (1); (2)

=> 3^2010+5^2010 chia 13 dư 1 + (-1) = 0 
hay 3^2010+5^2010 chia hết cho 13. 

bài 1:

Ta có
32010=(33)6701670(mod13)32010=(33)670≡1670(mod13)
Mà 52010=(52)1005(1)1005(mod13)52010=(52)1005≡(−1)1005(mod13)
Từ đó suy ra 32010+5201032010+52010 chia hết cho 13

31 tháng 7 2018

\(B=1+2+2^2+2^3+...+2^{14}+2^{15}\)

\(=1+\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{13}+2^{14}+2^{15}\right)\)

\(=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{13}\left(1+2+2^2\right)\)

\(=1+\left(1+2+2^2\right)\left(2+2^4+....+2^{13}\right)\)

\(=1+7\left(2+2^4+...+2^{13}\right)\)

=>  B không chia hết cho 7

\(Q=1+3+3^2+3^3+...+3^{19}+3^{20}\)

\(=1+\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)

\(=1+3\left(1+3\right)+3^3\left(1+3\right)+...+3^{19}\left(1+3\right)\)

\(=1+\left(1+3\right)\left(3+3^3+...+3^{19}\right)\)

\(=1+4\left(3+3^3+...+3^{19}\right)\)

=> Q không chia hết cho 4