
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


20212020 tận cùng là 1 ; 20252025 tận cùng là 5
202210 = (20224)2.20222 = (...6)2.(...4) = (...6).(...4) tận cùng là 4 (vì 6.4 = 24 tận cùng là 4)


A=(1+3+32)+(33+34+35)+...+(32019+32020+32021) A=(1+3+32)+33.(1+3+32)+...+32019.(1+3+32)
A=13+33.13+...+32019.13
A=13.(1+33+...+32019)chia hết cho 13
=>A chia hết cho 13
A = (1+3+3 mũ 2)+(3 mũ 3+3 mũ 4+3 mũ 5)+....+(3 mũ 2019 + 3 mũ 2020 + 3 mũ 2021)
A = 1 (1 + 3 + 3 mũ 2) + 3 mũ 9 (1+3+3 mũ 3) +...+ 3 mũ 6057 ( 1+3+3 mũ 2)
A = 1.13 +3 mũ 9.13 + ... + 3 mũ 6057 . 13
A =13.(1+3 mũ 9 +...+ 3 mũ 6057)
13 chia hết cho 13 nên A chia hết cho 13

Giải:
A = 3\(^0\) + 3\(^1\) + 3\(^2\) + ... + 3\(\)\(^{2021}\)
Xét dãy số: 0; 1; 2;...; 2021
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số số hạng của dãy số trên là: (2021 - 0) : 1 + 1 = 2022
A có 2022 hạng tử. Vì 2022 : 3 = 674
Vậy nhóm ba hạng tử liên tiếp của A vào nhau ta được:
A = (3\(^0\) + 3\(^1\) + 3\(^2\)) + (3\(^3\) + 3\(^4\) + 3\(^5\)) +...+ (3\(^{2019}\) + 3\(^{2020}\)+ 3\(^{2021}\))
A = (1+ 3 + 9)+ 3\(^3\).(1 + 3 + 9) + ... + 3\(^{2019}\) .(\(1+3+9\))
A = (1 + 3 +9).(1 + 3\(^3\) + ... + 3\(^{2019}\))
A = (4 + 9).(1 + 3\(^3\) + ... + 3\(^{2019}\))
A = 13.(1 + 3\(^3\) + ... + 3\(^{2019}\)) ⋮ 13
Vậy chứng minh A chia hết cho 13 là điều không thể.

A=5(1+5^2)+5^5(1+5^2)+...+5^2021(1+5^2)
=26(5+5^5+...+5^2021) chia hết cho 26