Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1: điều kiện xác định của phương trình 5x+14x−2+x−31+x=05x+14x−2+x−31+x=0 là:
A. x ≠≠1212
B. x ≠≠-1 và x ≠≠1212
C. x ≠≠-1 và x≠−12≠−12
D. x ≠≠-1
C2: bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn?
A. 2x2 +1<0
B. 0.x +4>0
C. x+33x+2016>0x+33x+2016>0
D. 11x−1<011x−1<0
C3: với x < y ta có:
A. x-5 >y -5
B. 5-2x <5-2y
C. 5-x<5-y
D. 2x-5<2y -5
C4: khi x<0 kết quả rút gọn của biểu thức |−2x|−x+5|−2x|−x+5 là:
A. -3x+5
B. x+5
C. -x+5
D. 3x+5
C1: nghiệm của phương trình 2x+6=1 là:
A. x =-2,5
B. x =2,5
C. x=3,5
D. x=-3,5
C2:Tập nghiệm của phương trình 2x̣̣(x-3)=0
A. S={0}{0}
B. S = {0; 3}
C. S={3}{3}
D. S=∅
C3: Tập nghiệm của phương trình \(\frac{3x-2}{2}=x\)3x−22=x là:
A. S = {2}
B. S={−2}{−2}
C. S=∅
D. S=[1][1]
C4:Tập nghiệm của phương trình x2-16 =0
A. S={16}{16}
B. S={4}{4}
C. S={−4}{−4}
D. S = {-4; 4}
C5: Bất phương trình 2x-3>0. Có nghiệm là:
A. x>1
B. x>1,5
C. xB. x>-1,5
D. x<1,5
C6:Bất phương trình 5x<2x-3 Có nghiệm là:
A. x <-1
B. x > 1
C. x >-0,5
D. x <0,5
Câu 1: D. \(\frac{1}{2}-4x=0\)
Câu 2: C. 2x - 1 = x
Câu 3: D. S = {-9}
# Chúc bạn học tốt #
a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x\right)^2-5^2-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(-2\right).\left(2x-5\right)=0\)
\(\Leftrightarrow2x-5=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
a,\(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(4x^2-25\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)^2-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x-5-2x-7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(-12\right)=0\)
\(\Rightarrow2x-5=0\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=\dfrac{5}{2}\)
\(b,2x^3+3x^2+2x+3=0\)
\(\Rightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Rightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Rightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=0\\x^2+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-3\\x^2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
\(c,x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)^3+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+9+x-9\right)=0\)
\(\Rightarrow\left(x+3\right).x^3=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x^3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\end{matrix}\right.\)
\(d,x^2\left(x+7\right)-4\left(x+7\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=4\\x=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)
a: =>-4x>16
=>x<-4
c: =>20x-25<=21-3x
=>23x<=46
=>x<=2
d: =>20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)
=>40x-100-90x+30<36-12x-30x+15
=>-50x-70<-42x+51
=>-8x<121
=>x>-121/8
\(a,2x+7\ge0\Leftrightarrow2x\ge-7\Rightarrow x\ge\dfrac{-7}{2}\)
\(b,5-2x\le0\Leftrightarrow-2x\le-5\Leftrightarrow x\ge\dfrac{5}{2}\)
\(c,\dfrac{x+2}{x^2+1}\ge0\Leftrightarrow x+2\ge x^2+1\Leftrightarrow x+2-x^2-1\ge0\Leftrightarrow x-x^2+1\ge0\)\(\Leftrightarrow-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{5}{4}\ge0\Leftrightarrow-\left(x-\dfrac{1}{2}\right)^2\ge-\dfrac{5}{4}\Rightarrow\left(x-\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\)\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}\ge\sqrt{\dfrac{5}{4}}\\x-\dfrac{1}{2}\ge-\sqrt{\dfrac{5}{4}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ge\sqrt{\dfrac{5}{4}}+\dfrac{1}{2}\\x\ge-\sqrt{\dfrac{5}{4}}+\dfrac{1}{2}\end{matrix}\right.\)
\(d,\dfrac{x^2+3}{2-x}< 0\Leftrightarrow x^2+3< 2-x\Leftrightarrow x^2+3-2+x\ge0\Leftrightarrow\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}\ge0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2\ge\dfrac{-3}{4}\)( vô lí )
Vậy : BPT trên vô nghiệm
Bài 1 :
a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)
b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)
c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)
d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)
e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)
Bài 1 :
f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
1.A
2.D
3.D
Câu 1: A