Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình 1
Theo định lý ta lét trong tam giác ta có :
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)=\(\dfrac{17}{27}=\dfrac{x}{x+9}\)=>27x=17x+153
=>x=15.3cm
Hình 2
Theo định lý ta lét trong tam giác ta có :
\(\dfrac{PE}{PQ}=\dfrac{PF}{PR}\)=\(\dfrac{16}{x}=\dfrac{20}{35}\)=>20x=560
=>x=28cm
Vì AD là phân giác góc B A C ^ nên ta có: B D D C = A B A C = 15 20 = 3 4
⇒ B D D C = 3 4 ⇒ B D B D + D C = 3 4 + 3 = 3 7 ⇔ B D B C = 3 7 ⇒ x 28 = 3 7
=> x = 12cm => y = 28 – x = 16 cm
Vậy x = 12cm; y = 16cm
Đáp án: D
Theo tính chất tpg của tam giác, ta có:
\(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\dfrac{AB}{x}=\dfrac{AC}{y}=\dfrac{15+20}{x+y}=\dfrac{35}{28}\) = 1,25
\(\Rightarrow x=\dfrac{15}{1,25}=12cm\)
\(\Rightarrow y=\dfrac{20}{1,25}=16cm\)
\(\RightarrowĐáp.án.D\)
Lời giải
a)
\(\Delta OMB\approx\Delta OND\Rightarrow\dfrac{OB}{OD}=\dfrac{OM}{ON}\)
\(\left\{{}\begin{matrix}OM+ON=5\\\dfrac{OM}{ON}=\dfrac{1,5}{4,5}=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}OM+ON=5\\3OM-ON=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}OM=\dfrac{5}{4}\left(cm\right)\\ON=\dfrac{15}{4}\left(cm\right)\end{matrix}\right.\)
a) \(\dfrac{5}{4}=1,25\Rightarrow DA\left(A\right)\)
b) \(\dfrac{15}{4}=3+\dfrac{3}{4}=3,75\rightarrow PA\left(C\right)\)
a)
Vậy ∠EBD = 900
Vậy trong hình vẽ có ba tam giác vuông đó là:
∆ABE, ∆CBD, ∆EBD.
b) ∆ABE và ∆CDB có:
∠A = ∠C = 900
∠ABE = ∠CDB
=> ∆ABE ∽ ∆CDB => AB/CD = AE/CB
=> CD = AB.CB/AE
= 18 (cm)
∆ABE vuông tại A => BE =
= 18 cm
∆EBD vuông tại B => ED =
= 28,2 cm
c) Ta có:
= 1/2 . 10.15 + 1/2 . 12.18
= 75 + 108 = 183 cm2
SACDE = 1/2 (AE + CD).AC =1/2 (10+18).27=378 cm2
=> SEBD = SEBD – ( SABE + SDBC) = 378 – 183 = 195cm2
Xét tam giác ABC, vì AD là phân giác góc B A C ^ nên ta có B D D C = A B A C ó x y = 3 , 5 7 , 5 = 7 15
Đáp án: A