Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(U_L=U_C=\dfrac{U_R}{2}\)
\(\Rightarrow Z_L=Z_C=\dfrac{R}{2}=100\Omega\)
\(\Rightarrow R = 200\Omega\)
Tổng trở \(Z=R=200\Omega\) (do \(Z_L=Z_C\))
Cường độ dòng điện: \(I=\dfrac{U}{Z}=\dfrac{120}{200}=0,6A\)
Công suất: \(P=I^2.R=0,6^2.200=72W\)
R1 + R2 = U2/P => U=120 V
R1R2 =(ZL-ZC)2=5184
Cos$1 = R1/(R12+R1R2)0.5=0.6
Cos$2=R2/(R22+R1R2)0.5=0.8
Để có hệ số công suất bằng 1 thì mạch phải xảy ra hiện tượng cộng hưởng.
Tức là: Lω = 1ωC1ωC⇔ 2πf0L = 12Πf0C12Πf0C ⇔ f20f02 = 14Π2LC14Π2LC (1)
Với tần số f ta có: ZL = ωL = 2πfL = 8 và ZC = 1ωC1ωC = 12ΠfC12ΠfC = 6
Do đó: f2 = 8686 . 14Π2LC14Π2LC (2)
Từ (1) (2): f0 = √32f32f < f.
Ta áp dụng điều kiện vuông pha với 2 đoạn mạch u1 và u2.
Khi đó: \(\tan\varphi_1.\tan\varphi_2=-1\)
\(\Leftrightarrow\frac{Z_L}{R}.\frac{Z_L-Z_C}{R}=-1\)
\(\Leftrightarrow R^2=Z_L\left(Z_C-Z_L\right)\)
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Đáp án đúng : B