![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=\frac{\sqrt{x}}{\sqrt{x}+1}\left(x\ge0\right)\)
Khi \(M=\sqrt{x}-2\)
\(\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}=x+\sqrt{x}-2\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}=x-\sqrt{x}-2\)
\(\Leftrightarrow x-\sqrt{x}-\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}+1-3=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=3\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=\left(\pm\sqrt{3}\right)^2\)
\(\Leftrightarrow\sqrt{x}-1=\pm\sqrt{3}\)
\(\Leftrightarrow\sqrt{x}=\pm\sqrt{3}+1\)
\(\Leftrightarrow\orbr{\begin{cases}x=\left(\sqrt{3}+1\right)^2\\x=\left(-\sqrt{3}+1\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+2\sqrt{3}+1\\1-2\sqrt{3}+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4+2\sqrt{3}\\x=4-2\sqrt{3}\end{cases}}\)
Vậy \(x\in\left\{4\pm2\sqrt{3}\right\}\)khi \(M=\sqrt{x}-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{81.16.169}=\sqrt{81}.\sqrt{16}.\sqrt{169}=9.4.13=468\)
\(\sqrt{10}.\sqrt{810}=\sqrt{10.10}.\sqrt{81}=10.9=90\)
\(\sqrt{64}.\sqrt{81.100}-\sqrt{64}.\sqrt{196.16}=\sqrt{64}\left(\sqrt{81}.\sqrt{100}-\sqrt{196}.\sqrt{16}\right)=8.\left(9.10-14.4\right)=8.34=272\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
\(B=\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)
\(\Rightarrow A.B=\left(x^2-6x+64\right)-\left(x^2-6x+36\right)=28\)
mà \(A=18\Rightarrow B=\frac{28}{18}=\frac{14}{9}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Vì \(\left(\sqrt{x}-1\right)^2\ge0\) , \(\left(\sqrt{y-1}-1\right)^2\ge0\), \(\left(\sqrt{z-2}-1\right)^2\ge0\) nên phương trình trên tương đương với
\(\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=0\\\left(\sqrt{y-1}-1\right)^2=0\\\left(\sqrt{z-2}-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
Từ đó tính được : \(x^2+y^2+z^2=1^2+2^2+3^2=14\)
Ta có:
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\)
=\(\sqrt{x.1}+\sqrt{\left(y-1\right).1}+\sqrt{\left(z-2\right).1}\)
\(\le\frac{x+1}{2}+\frac{y-1+1}{2}+\frac{z-2+1}{2}\)
=\(\frac{x+y+z}{2}\)
Dấu"=" xảy ra khi \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Ta có:x2+y2+z2=1+22+32=14
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
ĐK: \(x\geq \frac{-3}{2}\)
\(\sqrt{2x+3}=3-\sqrt{5}\)
\(\Rightarrow 2x+3=(3-\sqrt{5})^2=14-6\sqrt{5}\)
\(\Rightarrow x=\frac{11-6\sqrt{5}}{2}\)
Câu 2: ĐK: \(x\geq 0\)
\(\sqrt{5+\sqrt{7x}}=2+\sqrt{7}\)
\(\Rightarrow 5+\sqrt{7x}=(2+\sqrt{7})^2=11+4\sqrt{7}\)
\(\Rightarrow \sqrt{7x}=6+4\sqrt{7}\)
\(\Rightarrow 7x=(6+4\sqrt{7})^2\Rightarrow x=\frac{(6+4\sqrt{7})^2}{7}\)
Câu 3: ĐK: \(x\geq 0\)
\((\sqrt{x}-2)(5-\sqrt{x})=4-x\)
\(\Leftrightarrow 5\sqrt{x}-x-10+2\sqrt{x}=4-x\)
\(\Leftrightarrow 7\sqrt{x}=14\Rightarrow \sqrt{x}=2\Rightarrow x=4\)
Câu 4: ĐK: \(x\ge 1\)
Sửa đề \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
\(\Leftrightarrow \frac{\sqrt{x-1}}{2}-\frac{3}{2}\sqrt{9}.\sqrt{x-1}+24\sqrt{\frac{1}{64}}\sqrt{x-1}=-17\)
\(\Leftrightarrow \frac{\sqrt{x-1}}{2}-\frac{9\sqrt{x-1}}{2}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow \sqrt{x-1}(\frac{1}{2}-\frac{9}{2}+3)=-17\)
\(\Leftrightarrow -\sqrt{x-1}=-17\Rightarrow \sqrt{x-1}=17\Rightarrow x=17^2+1=290\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cái đầu là tính à?
Ta có: \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)
\(=\left(\sqrt{15}\right)^2+2.2\sqrt{3}.\sqrt{15}+\left(2\sqrt{3}\right)^2+12\sqrt{5}\)
\(=15+12\sqrt{5}+12+12\sqrt{5}\)
\(=27+24\sqrt{5}\)
Sau:
Ta thấy: Điều kiện để \(\sqrt{-\left|x+5\right|}\) có nghĩa là \(-\left|x+5\right|\ge0\left(\forall x\right)\)
Mà \(-\left|x+5\right|\le0\left(\forall x\right)\) nên dấu "=" xảy ra khi: \(\left|x+5\right|=0\Rightarrow x=-5\)
Vậy khi x = -5 thì \(\sqrt{-\left|x+5\right|}\) có nghĩa
Làm lại ý 2
\(\sqrt{-\left|x+5\right|}\)có nghĩa
\(\Leftrightarrow-\left|x+5\right|\ge0\)
\(\Leftrightarrow\left|x+5\right|\le0\)
\(\Leftrightarrow x+5\le0\)
\(\Leftrightarrow x\le-5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt \(\sqrt{x^2-6x+36}=\)M;\(\sqrt{x^2-6x+64}=\)N ,hiển nhiên M\(\ne\)N
M+N=7 <=>(M+N)(M-N)=7(M-N) <=>M2-N2=7(M-N) <=>-28=7(M-N) <=>N-M=4
A=2N-2M=2.4=8
Đặt \(\sqrt{x^2-6x+36}=a\ge0\Rightarrow\sqrt{x^2-6x+64}=\sqrt{a^2+28}\)
Vậy ta có phương trình :
\(a+\sqrt{a^2+28}=7\Leftrightarrow\sqrt{a^2+28}=7-a\Leftrightarrow\hept{\begin{cases}a\le7\\a^2+28=a^2-14a+49\end{cases}\Leftrightarrow a=\frac{3}{2}}\)
ta có : \(A=\sqrt{4\left(x^2-6x+36\right)+112}-2\sqrt{x^2-6x+36}=\sqrt{4a^2+112}-2a=8\)
bằng 8
nhanh nha mn