Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy \(cosx-0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)
\(tan^2x+\left(\sqrt{3}-1\right)tanx-\sqrt{3}=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
\(cosx=\frac{1}{2}=cos\left(\frac{\pi}{3}\right)\)
\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)
ĐKXĐ: \(cos\left(x+\frac{\pi}{3}\right)\ne0\Rightarrow x+\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\)
\(\Rightarrow x\ne\frac{\pi}{6}+k\pi\)
\(\Rightarrow D=R\backslash\left\{\frac{\pi}{6}+k\pi;k\in Z\right\}\)
\(3\left(1-cos^2x\right)-2cosx+2=0\)
\(\Leftrightarrow-3cos^2x-2cosx+5=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\frac{5}{3}< -1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=k2\pi\)