K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

Ta có \(y'=\frac{x^2-2mx+m^2}{\left(x-2m\right)^2},x\ne2m\)

Để y có hai khoảng đồng biến trên toàn miền xác định thì

\(y'\ge0,\forall x\ne2m\)

\(\Leftrightarrow x^2-4mx+m^2\ge0,\forall x\ne2m\)

\(\Leftrightarrow\Delta'\le0\Leftrightarrow4m^2-m^2\le0\)

\(\Leftrightarrow3m^2\le0\Leftrightarrow m=0\)

Câu tiếp theo:

y đồng biến trên\(\left(1,\infty\right)\Leftrightarrow y'\ge0,\forall x\in\left(1,+\infty\right)\)

     \(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=x^2-4mx+m^2\ge0,\forall x>1\\2m\notin\left(1,\infty\right)\end{cases}}\)

Để cj suy nghĩ mai lm tiếp=.=

2 tháng 8 2020

rõ ràng m=0 thì đk trên thõa mãn.

Với \(m=0:\Delta'=3m^2>0\) nên ta có:

\(f\left(x\right)\ge0,\forall x>1\Leftrightarrow x_1< x_2\le1\)

\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\f\left(1\right)\ge\\\frac{S}{2}-1< 0\end{cases}0}\)

\(f\left(1\right)\ge0\Leftrightarrow m^2-4m+1\ge0\Leftrightarrow m\le2-\sqrt{3}\)hay\(m\ge2+\sqrt{3}\)

\(\frac{S}{2}-1< 0\Leftrightarrow2m-1< 0\Leftrightarrow m< \frac{1}{2}\)

\(2m\notin\left(1,\infty\right)\Leftrightarrow2m\le1\Leftrightarrow m\le\frac{1}{2}\)

Vậy \(m\le2-\sqrt{3}\)là giá trị m cần tìm

5A. Vẽ đồ thị của các hàm số sau:a) \(y = x + 3\)b) \(y = 2 x - 5\)c) \(y = - 1 , 5 x\)5B. Vẽ đồ thị của các hàm số sau:a) \(y = x - 2\)b) \(y = - 2 x + 4\)c) \(y = \frac{2}{3} x\)6A. Trong các điểm sau, điểm nào thuộc đồ thị hàm số \(y = 3 x - 6\)?\(A \left(\right. 0 ; - 6 \left.\right) ; B \left(\right. - 1 ; - 3 \left.\right) ; C \left(\right. - 2 ; 0 \left.\right) ; D \left(\right. 1 ; - 3 \left.\right)\).6B. Trong các điểm sau, điểm nào...
Đọc tiếp

5A. Vẽ đồ thị của các hàm số sau:

a) \(y = x + 3\)
b) \(y = 2 x - 5\)
c) \(y = - 1 , 5 x\)


5B. Vẽ đồ thị của các hàm số sau:

a) \(y = x - 2\)
b) \(y = - 2 x + 4\)
c) \(y = \frac{2}{3} x\)


6A. Trong các điểm sau, điểm nào thuộc đồ thị hàm số \(y = 3 x - 6\)?

\(A \left(\right. 0 ; - 6 \left.\right) ; B \left(\right. - 1 ; - 3 \left.\right) ; C \left(\right. - 2 ; 0 \left.\right) ; D \left(\right. 1 ; - 3 \left.\right)\).


6B. Trong các điểm sau, điểm nào thuộc đồ thị hàm số \(y = - 2 x + 8\)?

\(M \left(\right. 2 ; 4 \left.\right) ; N \left(\right. 4 ; 0 \left.\right) ; P \left(\right. - 2 ; 4 \left.\right) ; Q \left(\right. 8 ; 0 \left.\right)\).


1A. Xác định hệ số góc của mỗi đường thẳng sau:

a) \(y = 4 x + 1\)
b) \(y = 3 - 1 , 5 x\)
c) \(y = \frac{3}{4} \left(\right. x + 4 \left.\right)\)
d) \(y = \frac{- 2 x + 3}{2}\)


1B. Xác định hệ số góc của mỗi đường thẳng sau:

a) \(y = - 5 x + 7\)
b) \(y = 1 - x\)
c) \(y = 0 , 3 \left(\right. x - 10 \left.\right)\)
d) \(y = \frac{6 x + 1}{3}\)

1

6A: Thay x=0 vào y=3x-6, ta được:

\(y=3\cdot0-6=0-6=-6\)

=>A(0;-6) thuộc đồ thị hàm số y=3x-6

Thay x=-1 vào y=3x-6, ta được:

\(y=3\cdot\left(-1\right)-6=-3-6=-9\) <>-3

=>B(-1;-3) không thuộc đồ thị hàm số y=3x-6

Thay x=-2 vào y=3x-6, ta được:

\(y=3\cdot\left(-2\right)-6=-6-6=-12\) <>0

=>C(-2;0) không thuộc đồ thị hàm số y=3x-6

Thay x=1 vào y=3x-6, ta được:

\(y=3\cdot1-6=3-6=-3\)

=>D(1;-3) thuộc đồ thị hàm số y=3x-6

6B:

Thay x=2 vào y=-2x+8, ta được:

\(y=-2\cdot2+8=-4+8=4\)

=>M(2;4) thuộc đồ thị hàm số y=-2x+8

Thay x=4 vào y=-2x+8, ta được:

\(y=-2\cdot4+8=-8+8=0\)

=>N(4;0) thuộc đồ thị hàm số y=-2x+8

Thay x=-2 vào y=-2x+8, ta được:
\(y=\left(-2\right)\cdot\left(-2\right)+8=4+8=12\) <>4

=>P(-2;4) không thuộc đồ thị hàm số y=-2x+8

Thay x=8 vào y=-2x+8, ta được:

\(y=-2\cdot8+8=-16+8=-8\) <>0

=>Q(8;0) không thuộc đồ thị hàm số y=-2x+8

1A:

a: y=4x+1 nên hệ số góc là a=4

b: y=3-1,5x nên hệ số góc là a=-1,5

c: \(y=\frac34\left(x+4\right)=\frac34x+3\)

=>Hệ số góc là \(a=\frac34\)

d: \(y=\frac{-2x+3}{2}=-x+\frac32\)

=>Hệ số góc là -1

1B:

a: y=-5x+7

=>Hệ số góc là a=-5

b: y=1-x=-x+1

=>Hệ số góc là a=-1

c: y=0,3(x-10)=0,3x-3

=>Hệ số góc là a=0,3

d: \(y=\frac{6x+1}{3}=2x+\frac13\)

=>Hệ số góc là a=2

5A:
a: y=x+3

Bảng giá trị:

x

0

1

y=x+3

3

4

Vẽ đồ thị:

b: y=2x-5

Bảng giá trị

x

0

1

y=2x-5

-5

-3

Vẽ đồ thị

c: y=-1,5x

Bảng giá trị:

x

0

2

y=-1,5x

0

-3

Vẽ đồ thị:

5B:

a: y=x-2

Bảng giá trị:

x

0

1

y=x-2

-2

-1

Bảng giá trị:

b: y=-2x+4

x

0

1

y=-2x+4

4

2

Vẽ đồ thị

c: \(y=\frac23x\)

Bảng giá trị:

x

0

3

y=\(\frac23\) x

0

2

Vẽ đồ thị:

3A. Cho hàm số \(y = 2 x + 3\).a) Hoàn thành bảng giá trị sau:\(\overline{\left.\right)x & - 2 & - 1 & 0 & 1 & 2 \\ y = 2 x + 3 & & & & & }\)b) Tìm giá trị của \(x\) sao cho \(y = 11\).3B. Cho hàm số \(y = - 3 x + 5\).a) Hoàn thành bảng giá trị sau:\(\overline{\left.\right)x & - 2 & - 1 & 0 & 1 & 2 \\ y = - 3 x + 5 & & & & & }\)b) Tìm giá trị của \(x\) sao cho \(y = - 19\).4A. Cho hàm số \(y = a x + 1\).a) Tìm hệ số \(a\), biết rằng khi \(x = 0 , 5\)...
Đọc tiếp

3A. Cho hàm số \(y = 2 x + 3\).

a) Hoàn thành bảng giá trị sau:

\(\overline{\left.\right)x & - 2 & - 1 & 0 & 1 & 2 \\ y = 2 x + 3 & & & & & }\)

b) Tìm giá trị của \(x\) sao cho \(y = 11\).


3B. Cho hàm số \(y = - 3 x + 5\).

a) Hoàn thành bảng giá trị sau:

\(\overline{\left.\right)x & - 2 & - 1 & 0 & 1 & 2 \\ y = - 3 x + 5 & & & & & }\)

b) Tìm giá trị của \(x\) sao cho \(y = - 19\).


4A. Cho hàm số \(y = a x + 1\).

a) Tìm hệ số \(a\), biết rằng khi \(x = 0 , 5\) thì \(y = 2\).
b) Với giá trị \(a\) vừa tìm được, hãy hoàn thành bảng sau:

\(\overline{\left.\right)x & - 4 & - 2 & 0 & 2 & 4 \\ y & & & & & }\)


4B. Cho hàm số \(y = a x - 4\).

a) Tìm hệ số \(a\), biết rằng khi \(x = 3\) thì \(y = 2\).
b) Với giá trị \(a\) vừa tìm được, hãy hoàn thành bảng sau:

\(\overline{\left.\right)x & - 2 & - 1 & 0 & 1 & 2 \\ y & & & & & }\)


5A. Vẽ đồ thị của các hàm số sau:

a) \(y = x + 3\)
b) \(y = 2 x - 5\)
c) \(y = - 1 , 5 x\)


5B. Vẽ đồ thị của các hàm số sau:

a) \(y = x - 2\)
b) \(y = - 2 x + 4\)
c) \(y = \frac{2}{3} x\)


6A. Trong các điểm sau, điểm nào thuộc đồ thị hàm số \(y = 3 x - 6\)?

\(A \left(\right. 0 ; - 6 \left.\right) ; B \left(\right. - 1 ; - 3 \left.\right) ; C \left(\right. - 2 ; 0 \left.\right) ; D \left(\right. 1 ; - 3 \left.\right)\).


6B. Trong các điểm sau, điểm nào thuộc đồ thị hàm số \(y = - 2 x + 8\)?

\(M \left(\right. 2 ; 4 \left.\right) ; N \left(\right. 4 ; 0 \left.\right) ; P \left(\right. - 2 ; 4 \left.\right) ; Q \left(\right. 8 ; 0 \left.\right)\).


1A. Xác định hệ số góc của mỗi đường thẳng sau:

a) \(y = 4 x + 1\)
b) \(y = 3 - 1 , 5 x\)
c) \(y = \frac{3}{4} \left(\right. x + 4 \left.\right)\)
d) \(y = \frac{- 2 x + 3}{2}\)


1B. Xác định hệ số góc của mỗi đường thẳng sau:

a) \(y = - 5 x + 7\)
b) \(y = 1 - x\)
c) \(y = 0 , 3 \left(\right. x - 10 \left.\right)\)
d) \(y = \frac{6 x + 1}{3}\) CÁC BẠN VẼ ĐỒ THỊ RA HỘ MÌNH NHÉ . Minh cảm ơn nhiều ạ

4

mình chưa rõ câu hỏi của bạn, hình như có vài chữ bị lỗi.

DH
Đỗ Hoàn
CTVHS VIP
17 tháng 8

Bạn đăng lại câu hỏi chứ câu hỏi của bạn bị lỗi rồi

26 tháng 6 2016

\(\left|2m^2-7\right|-27=-2\)

\(\Rightarrow\left|2m^2-7\right|=25\)

\(\Rightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\7-2m^2=25\left(loại\right)\end{array}\right.\)

\(\Rightarrow m=\pm4\)

25 tháng 3 2017

Ta có thể viết:

\(y=\frac{1}{x^2+x+1}=\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\)

Vì \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Do đó: \(y\le\frac{4}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\frac{1}{2}\)

Vậy \(MAX_y=\frac{4}{3}\) tại \(x=-\frac{1}{2}\)

26 tháng 3 2017

\(\frac{3}{4}\)

19 tháng 8 2016

\(\left|2m^2-7\right|-27=-2\)

\(\Leftrightarrow\left|2m^2-7\right|=25\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\7-2m^2=25\left(loai\right)\end{array}\right.\)

\(\Leftrightarrow m=\pm4\)

19 tháng 8 2016

ĐTHS trên đi qua M(1;-2) tức là \(-2=\left|2m^2-7\right|-27\Leftrightarrow\left|2m^2-7\right|=25\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\2m^2-7=-25\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2=32\left(\text{nhận}\right)\\2m^2=-18\left(\text{loại}\right)\end{array}\right.\)\(\Leftrightarrow m^2=16\Leftrightarrow m=\pm4\)

16 tháng 7 2016

P(x) = ax5 + by4 + cz3 + dt2 + e (với x;y;z;g;e là 7 số tự nhiên liên tiếp và a;b;c;d là các hệ số nguyên)

Từ điều kiện c) ta có :

- Nếu số k đó là y hoặc t thì y = t = 0. Loại trường hợp này vì e là số tự nhiên mà e < t = 0

- Nếu số k đó là x; z hoặc e :

- Với k là x ta có ax5 + by4 + cz3 + dt2 + e = 0   =>  -ax5 =  by4 + cz3 + dt2 + e

Dễ thấy by4 + cz3 + dt2 + e > 0  =>  -ax5 > 0 => .... tìm đc x

Tương tự tìm đc z hoăc e. Thử trong 3 số trên trường hợp nào thỏa mãn điều kiện b là ra.

Nhờ Kiệt giúp kìa

NM
4 tháng 2 2021

từ phương trình thứ nhất ta có :

\(y=-x+3m+2\) thế xuống phương trình dười : \(3x+2x-6m-4=11-m\Leftrightarrow x=3+m\Rightarrow y=2m-1\)

b. ta có \(x^2-y^2=\left(m+3\right)^2-\left(2m-1\right)^2=-3m^2+10m+8=-3\left(m-\frac{5}{3}\right)^2+\frac{49}{3}\le\frac{49}{3}\)

Dấu bằng xảy ra khi m=5/3

16 tháng 7 2018

\(a,\)Có :\(f\left(0\right)=3.0+1=1\)

\(f\left(-1\right)=-1.3-1=-3-1=-4\)

\(f\left(-\frac{1}{3}\right)=3.\left(-\frac{1}{3}\right)-1=-1-1=-2\)

\(b,\)Có \(3x-1=-16\)

\(\Rightarrow3x=-15\)

\(\Rightarrow x=-5\)

Vậy x = - 5 để y = -16

6 tháng 4 2020

GIẢI:

a) f(0)=-1

    f(-1)=-4

    f(-1/3)=-2

b) 3x-1=-16

     3x=-16+1

     3x=-15

       x=-15:3

       x=-5.

    vậy x=-5

16 tháng 7 2018

\(a,\)Vì \(\left|x\right|=\frac{1}{3}\)

\(\Rightarrow x=\orbr{\begin{cases}\frac{1}{3}\\-\frac{1}{3}\end{cases}}\)

Với \(x=\frac{1}{3}\)

\(\Rightarrow y=3.\left(\frac{1}{3}\right)^2-2.\frac{1}{3}+1\)

\(\Rightarrow y=\frac{1}{3}-\frac{2}{3}+\frac{3}{3}\)

\(\Rightarrow y=\frac{2}{3}\)

Với \(x=-\frac{1}{3}\)

\(\Rightarrow y=3.\left(-\frac{1}{3}\right)^2-2.-\frac{1}{3}+1\)

\(\Rightarrow y=\frac{1}{3}+\frac{2}{3}+1\)

\(\Rightarrow y=1+1=2\)

\(b,y=1\)

\(\Rightarrow3x^2-2x+1=1\)

\(\Rightarrow x\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\3x=2\end{cases}}\)

\(\Rightarrow x=\orbr{\begin{cases}0\\\frac{2}{3}\end{cases}}\)

\(c,\)Tất cả các điểm trên