Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(x=1\Rightarrow a+b+c=0\)
\(\Rightarrow a+c=-b\)
\(\Rightarrow\frac{a+c}{-b}=1\Rightarrow\frac{a+c}{b}=-1\)
\(y=ax^2+bx+c=a1^2+b1+c=a+b+\)\(c=0\)
b khác 0 suy ra a và c trái dấu
a và c trái dấu suy ra a+c =0
khi đó ta có \(\frac{a+c}{b}=0\)
Lật ngược lại:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\)
\(\Rightarrow x=y=z\left(ez-see!\right)\)
\(\Rightarrow x-z=0\)
Từ giả thiết y = \(\frac{x}{4}\) và \(\frac{x^2}{4}=9\) => x = \(\sqrt{36}=6\left(x\ge0\right)\)
y=\(\frac{6}{4}=\frac{3}{2}\)
Vậy : E đúng
Hjhj
Anh thấy thường thường có 4 đáp án , liếc thấy cái cuối cùng đúng nên chọn D
:v
Thay \(x=1\) vào hàm số \(y=ax^2+bx+c=0\), ta có:
\(y=a.1^2+b.1+c=0\\ \Rightarrow y=a+b+c=0\\ \Rightarrow a+c=0-b\\ a+c=-b\)
Thay \(a+c=-b\) vào \(\dfrac{a+c}{b}\), ta có:
\(\dfrac{a+c}{b}=-\dfrac{b}{b}=-1\)
Vậy: \(\dfrac{a+c}{b}=-1\)
khi x=1 thi \(a\left(1\right)^2+b\left(1\right)+c=0\Rightarrow a+b+c=0\)
do đó a+c=-b
\(\dfrac{a+c}{b}=\dfrac{-b}{b}=-1\)
Theo đề ta có :
\(x=\frac{a}{m}\) \(;\)\(y=\frac{b}{m}\)
mà \(x< y\) \(\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\)
Có : \(x=\frac{a}{m}\Rightarrow x=\frac{2a}{2m}=\frac{a+a}{2m}\) ; \(z=\frac{a+b}{2m}\) và \(y=\frac{b}{m}\Rightarrow y=\frac{2b}{2m}=\frac{b+b}{2m}\)
* Vì a < b \(\Rightarrow\) a+a < a+b \(\Rightarrow\frac{a+a}{2m}< \frac{a+b}{2m}\)\(\Rightarrow x< z\) \(\left(1\right)\)
* Vì \(a< b\)\(\Rightarrow a+b< b+b\Rightarrow\frac{a+b}{2m}< \frac{b+b}{2m}\Rightarrow z< y\)\(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) nên ta có :
\(\frac{a+a}{2m}< \frac{a+b}{2m}< \frac{b+b}{2m}\Rightarrow x< z< y\) \(\left(đpcm\right)\)
Chào em, em hãy xem lời giải dưới đây nhé!
Lời giải:
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
bz−cy/a=cx−az/b=ay−bx/c=abz−acy/a2=bcx−abz/b2=acy−bcx/c2
=abz−acy+bcx−abz+acy−bcx/a2+b2+c2 =0 (*)
Từ (*) suy ra bz−cy/a=0 nên bz−cy=0⇒bz=cy. Hay b/y=c/z (1)
Từ (*) suy ra cx−az/b=0 nên cx−az=0⇒cx=az. Hay c/z=a/x (2)
Từ (1) và (2) ta suy ra a/x=b/y=c/z.
b)
Có : x/z+y+1=y/x+z+1=z/x+y−2=x+y+z/2(x+y+z)=x+y+z=1/2
Từ đó, ta có : z/x+y−2=1/2⇒2z = x+y−2⇒2z+2=x+y
Lại có : x+y+z=1/2⇔2z+2+z=1/2⇔3z=1/2−2=−3/2⇔z=−1/2
Từ đó tìm đc x, y
Thay x=1 vào hàm số ta đc:
a.12+b.1+c=0
<=>a+b+c=0
Mà a+c=0-b=-b
khi đó (a+c)/b=-b/b=-1
Mongchow vào các bạn