Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x^2-3x+1\ne0\)
\(\Leftrightarrow x\ne\left\{\frac{3-\sqrt{5}}{2};\frac{3+\sqrt{5}}{2}\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{3-\sqrt{5}}{2}\\b=\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)
Đến đây thế số bấm máy biểu thức Q thôi: \(Q=14\)
a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)
a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)
a: A=(-7/4; -1/2]
\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)
\(C=\left(\dfrac{2}{3};+\infty\right)\)
b: \(\left(A\cap B\right)\cap C=\varnothing\)
\(\left(A\cup C\right)\cap\left(B\A\right)\)
\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)
\(=\left(4;\dfrac{9}{2}\right)\)
a) Công thức có nghĩa với x ∈ R sao cho 2x + 1 ≠ 0.
Vậy tập xác định của hàm số là:
D = { x ∈ R/2x + 1 ≠ 0} =
b) Tương tự như câu a), tập xác định của hàm số đã cho là:
D = { x ∈ R/x2 + 2x - 3 ≠ 0}
x2 + 2x – 3 = 0 ⇔ x = -3 hoặc x = 1
Vậy D = R {- 3; 1}.
c) có nghĩa với x ∈ R sao cho 2x + 1 ≥ 0
có nghĩa với x ∈ R sao cho 3 - x ≥ 0
Vậy tập xác định của hàm số là:
D = D1 ∩ D2, trong đó:
D1 = {x ∈ R/2x + 1 ≥ 0} =
D2 = {x ∈ R/3 - x ≥ 0} =
a) để \(y=\sqrt{x+6\sqrt{x-1}+8}+\dfrac{5}{1-x}\) có nghĩa
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\1-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne1\end{matrix}\right.\Rightarrow x>1\) vậy \(x>1\)
b) để \(y=\dfrac{3x-5}{x^3-x^2+3x-3}\) có nghĩa
\(\Leftrightarrow x^3-x^2+3x-3\ne0\Leftrightarrow x^2\left(x-1\right)+3\left(x-1\right)\ne0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x-1\right)\ne0\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)
c) để \(y=\dfrac{3x+1}{\left|3x-1\right|+\left|x-7\right|}\ne0\)
\(\Leftrightarrow\left|3x-1\right|+\left|x-7\right|\ne0\Leftrightarrow\left[{}\begin{matrix}3x-1\ne0\\x-7\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{1}{3}\\x\ne7\end{matrix}\right.\)
\(\Rightarrow x\in R\)
d) để : \(y=\dfrac{\sqrt{x-2}}{\left|x-3\right|+\sqrt{9-x^2}}\) có nghĩa
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\9-x^2\ge0\\\left|x-3\right|+\sqrt{9-x^2}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\-3\le x\le3\\x\ne3\end{matrix}\right.\Rightarrow2\le x< 3\)
y xđ khi \(x^2-3x+1\ne0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{3+\sqrt{5}}{2}\\x\ne\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)
\(Q=\left(\dfrac{3-\sqrt{5}}{2}\right)^3+\left(\dfrac{3+\sqrt{5}}{2}\right)^3+3\left(\dfrac{3-\sqrt{5}}{2}+\dfrac{3+\sqrt{5}}{2}\right)\left(\dfrac{3-\sqrt{5}}{2}.\dfrac{3+\sqrt{5}}{2}\right)-13\left(\dfrac{3-\sqrt{5}}{2}.\dfrac{3+\sqrt{5}}{2}\right)\) \(=\left(\dfrac{3-\sqrt{5}}{2}+\dfrac{3+\sqrt{5}}{2}\right)^3-13\)
\(=3^3-13=27-13=14\)