\(\dfrac{a+c}{b}=\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Thay \(x=1\) vào hàm số \(y=ax^2+bx+c=0\), ta có:

\(y=a.1^2+b.1+c=0\\ \Rightarrow y=a+b+c=0\\ \Rightarrow a+c=0-b\\ a+c=-b\)

Thay \(a+c=-b\) vào \(\dfrac{a+c}{b}\), ta có:

\(\dfrac{a+c}{b}=-\dfrac{b}{b}=-1\)

Vậy: \(\dfrac{a+c}{b}=-1\)

2 tháng 3 2017

khi x=1 thi \(a\left(1\right)^2+b\left(1\right)+c=0\Rightarrow a+b+c=0\)

do đó a+c=-b

\(\dfrac{a+c}{b}=\dfrac{-b}{b}=-1\)

16 tháng 2 2017

Từ \(x=1\Rightarrow a+b+c=0\)

\(\Rightarrow a+c=-b\)

\(\Rightarrow\frac{a+c}{-b}=1\Rightarrow\frac{a+c}{b}=-1\)

16 tháng 2 2017

\(y=ax^2+bx+c=a1^2+b1+c=a+b+\)\(c=0\)

b khác 0 suy ra a và c trái dấu

a và c trái dấu suy ra a+c =0

khi đó ta có \(\frac{a+c}{b}=0\)

13 tháng 2 2017

x=1 => \(x=1\Rightarrow y=ax^2+bx+c=a.1+b.1+c=a+b+c=0\)

Giả sử b khác 0 => a + c = - b để thỏa mãn cho a+b+c=0 => \(\frac{a+c}{b}=\frac{-b}{b}=-1\)

6 tháng 3 2016

Thay x=1 vào hàm số ta đc:

a.12+b.1+c=0

<=>a+b+c=0

 Mà a+c=0-b=-b

khi đó (a+c)/b=-b/b=-1

6 tháng 3 2016

Mongchow vào các bạn

7 tháng 6 2017

1.

a, Để \(\dfrac{x+1}{x^2-2}\) có nghĩa \(\Leftrightarrow x^2-2\ne0\Leftrightarrow x^2\ne2\Leftrightarrow\left\{{}\begin{matrix}x\ne\sqrt{2}\\x\ne-\sqrt{2}\end{matrix}\right.\)

b, Để \(\dfrac{x-1}{x^2+1}\)có nghĩa \(\Leftrightarrow x^2+1\ne0\Leftrightarrow x^2\ne-1\)

\(x^2\ge0\forall x\in R\).

Vậy biểu thức trên luôn luôn có nghĩa.

c, Để \(\dfrac{ax+by+c}{xy-3y}cónghĩa\Leftrightarrow xy-3y=y\left(x-3\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\).