K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

Độ cao của máy bay là CD, độ dài AB = 60m; D A C ^ = 30 0 ; D B C ^ = 50 0

Gọi BC = x => AC = 60 + x

Xét tam giác BDC vuông tại C có:

Xét tam giác ADC vuông tại C có:

Vậy độ cao của máy bay so với mặt đất là 67,19m

Đáp án cần chọn là: C

28 tháng 1 2019

Độ cao của máy bay là CD, độ dài AB = 80m

Gọi BC = x (x > 0) => AC = 80 + x

Xét tam giác BDC vuông tại C có CD = x . tan   55 0

Xét tam giác ADC vuông tại C có CD = (80 + x). tan   44 0

Suy ra  x . tan   55 0 =  (80 + x).  tan   44 0

=> x 113,96m

=> CD = 113,96. tan   55 0 ≈ 162,75m

Vậy độ cao của máy bay so với mặt đất là 162,75m

Đáp án cần chọn là: A

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. Câu 4: (4,0 điểm)Cho đường tròn (O; R) và hai...
Đọc tiếp

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).
a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.
b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. 
Câu 4: (4,0 điểm)
Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA.
b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất.
Câu 5: (2,0 điểm) Cho a, b, c là các độ dài ba cạnh của một tam giác và thỏa hệ thức a+b+c=1. Chứng minh rằng a2+b2+c2<12.

0
3 tháng 8 2021

Độ cao của máy bay là CD, độ dài AB = 80m

Gọi BC = x (x > 0) => AC = 80 + x

Xét tam giác BDC vuông tại C có CD = x . tan   55 0

Xét tam giác ADC vuông tại C có CD = (80 + x). tan   44 0

Suy ra  x . tan   55 0 =  (80 + x).  tan   44 0

=> x ≈ 113,96m

=> CD = 113,96. tan   55 0 ≈ 162,75m

Vậy độ cao của máy bay so với mặt đất là 162,75m

3 tháng 8 2021

Nguyễn Văn Phú

4 tháng 7 2021

- Áp dụng tỉ số lượng giác vào tam giác ABC vuông tại B

\(\Rightarrow tan60=\dfrac{h}{BC}\)

\(\Rightarrow BC=\dfrac{h\sqrt{3}}{3}\)

\(\Rightarrow BD=BC+CD=\dfrac{h\sqrt{3}}{3}+600\)

- Áp dụng tỉ số lượng giác vào tam giác ABD vuông tại B

\(tan50=\dfrac{h}{BD}\)

\(\Rightarrow h=tan50.\left(\dfrac{h\sqrt{3}}{3}+600\right)\)

\(\Rightarrow h\approx2292m\)

Vậy ...

Gọi C là vị trí của máy bay

Gọi CH là độ cao của máy bay so với mặt đất

=>CH\(\perp\)AB tại H

Ta có hình vẽ sau:

loading...

Xét ΔCBA có \(\widehat{CBA}+\widehat{CAB}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+30^0+40^0=180^0\)

=>\(\widehat{ACB}=110^0\)

Xét ΔABC có \(\dfrac{BA}{sinACB}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)

=>\(\dfrac{400}{sin110}=\dfrac{AC}{sin40}=\dfrac{BC}{sin30}\)

=>\(AC\simeq273,62\left(m\right);BC\simeq212,84\left(m\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB\cdot sinACB\)

\(=\dfrac{1}{2}\cdot273,62\cdot212,84\cdot sin110\simeq27362,57\left(m^2\right)\)

Xét ΔACB có CH là đường cao

nên \(\dfrac{1}{2}\cdot CH\cdot AB=S_{ABC}\)

=>\(CH\cdot\dfrac{400}{2}=27362,57\)

=>\(CH\simeq136,81\left(m\right)\)

16 tháng 6 2018

2. Để MONP là hình vuông thì đường chéo OM=ON\(\sqrt{2}\)=R\(\sqrt{2}\)

Dựng điểm M: Ta dựng hình vuông OACD, dựng đường tròn tâm O đi qua điểm D, cắt (d) tại M

CM: Từ M vã 2 tiếp tuyến MN và MP ta có: \(MN=\sqrt{MO^2-ON^2}=R\)

Nên tam giác ONM vuông cân tại N. Tương tự tam giác OMP vuông cân tại P do đó MNOP là hình vuông

Bài toán luôn có 2 nghiệm vì \(OM=R\sqrt{2}>R\)

16 tháng 6 2018

3. Ta có MN và MP là 2 tiếp tuyến của (O) nên MNOP là tứ giác nội tiếp đường tròn đường kính OM. Tâm là trung điểm H của OM. Suy ra tam giác cân MPO nội tiếp trong đường tròn đường kính OM, tâm là H

Kẻ \(OE\perp AB\) thì E là trung điểm của AB (cố định ). kẻ  \(HL\perp\left(d\right)\) thì HL//OE nên HL là đường trung bình của tam giác OEM => HL=1/2 OE (không đổi)

Do đó khi M di động trên (d) thì H luôn cách đều (d) một đoạn không đổi, nên H chạy trên đường thẳng (d')//(d) và (d') đi qua trung điểm của đoạn OE

Ta có OM là phân giác góc NMP (tính chất 2 tiếp tuyến cắt nhau). Kẻ tia phân giác góc PNM cắt đường tròn (O) tại điểm F khi đó NF=FP (ứng với góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung bằng nhau)

=> F ở trên OM dó đó F là tâm đường tròn nội tiếp tam giác MNP

Vậy khi M di động trên (d) thì tâm đường tròn nội tiếp tam giác MNP chạy trên đường tròn (O)