K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2019

Để học tốt Toán 8 | Giải toán lớp 8

⇒ MN // BC (định lí Ta lét đảo)

Để học tốt Toán 8 | Giải toán lớp 8

Suy ra: Δ AMN = ∆ A’B’C’(c.c.c) nên hai tam giác này cũng đồng dạng với nhau (1).

Xét tam giác ABC có MN// BC nên Δ AMN đồng dạng với tam giác ABC (2)

Từ (1) và (2) suy ra: Δ A’B’C’ đồng dạng với tam giác ABC (tính chất).

5 tháng 1 2018

b) Giả sử MNPQ là hình chữ nhật 

=> ^QMN=90do HAY QM vuong goc voi MN

Lai co MN//BC

=> BC vuong goc voi QM

    Ma QM //AO

=> AO vuong goc voi BC

=> O thuoc duong cao ke tu A den BC

Goi giao diem cua AO VA BC LA H 

Để SMNPQ=SABC

=> MQ.QP=(BC.AH)/2

Mà QP=BC/2

=> MQ=AH

Ma MQ=AH/2 

=> AH=AO/2

Mà AO hay AH vuong goc voi BC

=> BC la trung truc cua AO .

Vay de tu giac MNPQ vua la HCN vua co dien h =tam giac ABC thi BC phai la trung truc cua AO

5 tháng 1 2018

a,Do tia AO nằm giữa tia AB và tia AC(gt)

Gọi O là điểm nằm giữa đoạn thẳng BC

sao cho BO< OC

M,N,P,Q lần lượt là trung điểm của OB,OC,AC,AB (gt)

=>BM=MO;ON=NC;CP=PA;AQ=QB

Vậy ta có:PQ là đường trung bình của tam giác ABC nên PQ//=1/2 BC (1)

Tương tự:

PN là đường trung bình của tam giác ACO nên PN//=1/2 AO (2)

QM là đường trung bình của tam giác ABO nên QM//=1/2 AO (3)

Từ (2),(3) suy ra:

PN//=QM=1/2 OA ( t/c 2 đường thẳng//) (4)

Do đó PQ//=MN

=> Tứ giác MNPQ là hình bình hành

b,theo cmt : PN//=QM=1/2 OA 

Mặt khác, AO là cạnh đối diện của 2 góc B và góc C

Từ đó=>góc B=góc C

=> tam giác ABC cân tại A

=>O là trung điểm của BC

=>AO _|_BC nên góc AOB=góc AOC=90°

=> 3 điểm B,O,C thẳng hàng (vì BOC=180°=góc AOB+góc AOC)

M,N là trung điểm của OB và OC(gt)

nên B,M,O,N,C thẳng hàng.

=>QM_|_BC và PN_|_BC

Hay góc QMN=góc PNM=1 vuông (5)

Theo (1) PQ//BC

=>PQ_|_QM ; PQ_|_PN

Hay góc MQP=góc NPQ=1 vuông (6)

Từ (5),(6) suy ra:

Tứ giác MNPQ là hình chữ nhật (đpcm)

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là...
Đọc tiếp

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .

Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là đường thẳng AB) sao cho các tia MA, MB tạo với đường thẳng d một tam giác có diện tích nhỏ nhất.

Bài 8: Cho tam giác ABC, trên cạnh BC, CA và AB lần lượt lấy các điểm M, N và P sao cho: a) Chứng minh rằng: AM, BN, CP là độ dài ba cạnh của một tam giác mà ta kí hiệu là \(\Delta\)(k). b) Tìm k để diện tích tam giác \(\Delta\)(k) nhỏ nhất.

0
2 tháng 5 2020

c) Giả thuyết: tứ giác ANMP là hình chữ nhật thì hình bình hành ANMP vuông tại A

=> \(\Delta ABC\)vuông tại A

Vậy: DK để tứ giác ANMP là hình chữ nhật thì \(\Delta ABC\)phải vuông tại A

2 tháng 5 2020

d) Để tứ giác ANMP là hình vuông thì:

     + Tứ giác ANMP phải là hình thoi

     + Tứ giác ANMP có 1 góc vuông

(Dựa vào DHNB thứ 4: Hình thoi có một góc vuông là hình vuông)

Do đó: Để tứ giác ANMP là hình vuông thì: M phải là giao điểm của phân giác góc A và cạnh BC; đồng thời tứ giác ANMP có một góc vuông tại A(kết hợp kết quả câu b và c)

Hok tốt ~