Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc xe thứ nhất là x
Vận tốc xe thứ hai là x-10
Theo đề, ta có:
\(\dfrac{200}{x-10}-\dfrac{200}{x}=1\)
\(\Leftrightarrow x^2-10x=200x-200x+2000\)
\(\Leftrightarrow x^2-10x-2000=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot1\cdot\left(-2000\right)=8100\)
Vì Δ>0 nên pt có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{10-90}{2}=-\dfrac{80}{2}=-40\left(loại\right)\\x_2=\dfrac{10+90}{2}=50\left(nhận\right)\end{matrix}\right.\)
Gọi vận tốc xe thứ 2 là x(x>0) km/h
Vận tốc xe thứ nhất là x+10km/h
thời gian xe thứ nhất đi hết quãng đường AB là \(\dfrac{100}{x+10}\)h
thời gian xe thứ 2 đi hết quãng đường AB là \(\dfrac{100}{x}\)h
Vì xe thứ nhất đến B sớm hơn xe thứ 2 là 30p=\(\dfrac{1}{2}\)h nên ta có pt
\(\dfrac{100}{x}\)-\(\dfrac{100}{x+10}\)=\(\dfrac{1}{2}\)
giải pt x=40
vậy vận tốc xe thứ 2 là 40km/h
=> vận tốc xe thứ 2 là 40+10=50 km/h
THAM KHẢO :
Gọi vận tốc của xe thứ nhất a (km/h),
vận tốc của xe thứ hai là là b(km/h) (a>10,b>0)
Vận tốc của xe thiws nhất lớn hơn vận tốc của xe thứ hai là 10km/giờ nên a=b+10(1)
Quãng đường AB dài 100km.
Thời gian đi hết quãng đường AB của xe thứ nhất là 100/a(giờ)
Thời gian đi hết quãng đường AB của xe thứ hai là 100/b (giờ)
Xe thứ nhất đến B sớm hơn xe thứ hai 30 phút=1/2 giờ nên ta có:
100a+12=100b(2)
Thay (1) và (2) ta có:
100b+10+12=100b
⇒100.2.b+b(b+10)=100.2.(b+10)
⇔b2+10b−2000=0
⇔(b−40)(b+50)=0⇔
⇒b=40(nhận) suy ra a=50km/h
Hoặc b=−50b=−50 (loại)
Vậy vận tốc của xe thứ nhất là 50 km/h; vận tốc của xe thứ hai là 40 km/h.
Chúc bạn học tốt
Gọi vận tốc xe máy là x (km/h). Thì vận tốc ô tô là: \(x+10\)(km/h).
Thời gian để xe máy đi hết AB là: \(\frac{120}{x}\)(h)
Thời gian để ô tô đi hết AB là : \(\frac{120}{x+10}\)
\(\Rightarrow\frac{120}{x}-\frac{120}{x+10}=\frac{36}{60}=0,6\)
\(\Leftrightarrow\hept{\begin{cases}x=-50\left(l\right)\\x=40\end{cases}}\)
Vậy vận tốc xe máy là 40 (km/h) vận tốc ô tô là: 50(km/h).
p/s : kham khảo
Gọi vận tốc xe máy là x (km/h). Thì vận tốc ô tô là: \(x+10\)(km/h).
Thời gian để xe máy đi hết AB là: \(\frac{120}{x}\)(h)
Thời gian để ô tô đi hết AB là: \(\frac{120}{x+10}\)
\(\Rightarrow\frac{120}{x}-\frac{120}{x+10}=\frac{36}{60}=0,6\)
\(\Leftrightarrow\hept{\begin{cases}x=-50\left(l\right)\\x=40\end{cases}}\)
Vậy vận tốc xe máy là 40 (km/h) vận tốc ô tô là: 50(km/h).
Gọi vận tốc xe thứ 2 là x (km/h; x> 0)
Vận tốc xe thứ nhất là x+ 10 (km/h)
Bài ra ta có: \(\dfrac{200}{x}\)- \(\dfrac{200}{x+10}\)= 1
==> x= 40 (thỏa mãn)
Vậy vận tốc xe thứ 2 là 40 (km/h)
Vận tốc xe thứ nhất là: 40+ 10= 50 (km/h)
Gọi vân tốc, thời gian ô tô lần lượt là x;y ( x;y > 0 )
Theo bài ra ta có hpt
\(\left\{{}\begin{matrix}xy=120\\\left(x-4\right)\left(y+\dfrac{5}{6}\right)=120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy=120\\xy+\dfrac{5x}{6}-4y-\dfrac{10}{3}=120\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5x}{6}-4y-\dfrac{10}{3}=0\\y=\dfrac{120}{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5x}{6}-\dfrac{480}{x}-\dfrac{10}{3}=0\\y=\dfrac{120}{x}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\approx26\\y=\dfrac{60}{13}\end{matrix}\right.\)
vân tốc xe máy là x - 4 = 26 - 4 = 22 km/h
Gọi vận tốc xe máy là x(km/h) ; (x > 0)
=> Vận tốc ô tô là x + 4 (km/h)
Thời gian đi của xe máy : \(\dfrac{120}{x}\left(h\right)\)(1)
Thời gian đi của ô tô : \(\dfrac{120}{x+4}\)(h) (2)
Vì ô tô đến trước xe máy 50 phút = 5/6 giờ (3)
Từ (1)(2)(3) => Phương trình : \(\dfrac{120}{x}-\dfrac{120}{x+4}=\dfrac{5}{6}\)
<=> \(\dfrac{1}{x}-\dfrac{1}{x+4}=\dfrac{1}{144}\)
<=> \(\dfrac{4}{x\left(x+4\right)}=\dfrac{1}{144}\)
<=> x2 + 4x - 576 = 0
<=> \(\left(x+2-\sqrt{580}\right)\left(x+2+\sqrt{580}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{580}-2\\x=-\sqrt{580}-2\left(\text{loại}\right)\end{matrix}\right.\Leftrightarrow x=\sqrt{580}-2\)Vận tốc xe máy : \(\sqrt{580}-2\)(km/h) ;
Vận tốc ô tô \(\sqrt{580}+2\)(km/h)
gọi x vận tốc của xe thứ 1
y là vận tốc của xe thứ 2 (km/h)
(y>0;x>10)
vì vận tốc xe thứ 1 lớn hơn xe thứ 2 là 10km /h nên ta có phương trình:
x-y=10(1)
thgian xe thứ 1 đi hết quãng đường AB là \(\dfrac{100}{x}\)(h)
thgian xe thứ 2 đi hết quãng đường AB là \(\dfrac{100}{y}\)(h)
vì xe thứ 1 đến B trước xe thứu 2là 30'=\(\dfrac{1}{2}\)h nên ta có phương trình:
\(\dfrac{100}{y}-\dfrac{100}{x}\)=\(\dfrac{1}{2}\)(2)
từ (1) và (2) at có hệ phương trình:
\(\left\{{}\begin{matrix}x-y=10\\\dfrac{100}{y}-\dfrac{100}{x}=\dfrac{1}{2}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{200}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{x-y}{xy}=\dfrac{1}{200}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y=10\\xy=2000\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=10+y\\\text{y ( 10 + y ) = 2000}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=10+y\\\text{y^2 + 10y − 2000 = 0 }\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=10+y\\\text{( y − 40 ) ( y + 50 ) = 0}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=10+y\\\left[{}\begin{matrix}y=40\left(TM\right)\\y=-50\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=50\\y=40\end{matrix}\right.\)
vậy...
mk sữa lại nha
pt thứ 2: \(\dfrac{100}{y}-\dfrac{100}{x}=\dfrac{1}{2}\)(2)
⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{100}{y}-\dfrac{100}{x}=\dfrac{1}{2}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{1}{y}-\dfrac{1}{x}=\dfrac{1}{200}\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-y=10\\\dfrac{x-y}{xy}=\dfrac{1}{200}\end{matrix}\right.\).....
Gọi vận tốc xe thứ nhất và xe thứ 2 lần lượt là v1; v2.
=> v1-v2=10
Thời gian xe 1 đến B là \(t_1=\frac{200}{v_1}\) ; Thời gian xe 2 đến B là \(t_2=\frac{200}{v_2}\)
Mà \(-t_1 +t_2=1\) => \(-\frac{200}{v1}+\frac{200}{v2}=1\)
Vậy ta có hệ sau : \(\hept{\begin{cases}v_1-v_2=10\\-\frac{200}{v_1}+\frac{200}{v_2}=1\end{cases}}\)
Giải hệ ta được : \(\hept{\begin{cases}v_1=50\left(km:h\right)\\v_2=40\left(km:h\right)\end{cases}}\)
Gọi thời gian xe 2 đi là t (h) ( t > 1) thì thời gian xe 1 đi là t - 1 (h)
Vận tốc xe 1 là: \(\frac{200}{t-1}\left(km/h\right)\) , vận tốc xe 2 là: \(\frac{200}{t}\left(km/h\right)\)
Ta có: \(\frac{200}{t-1}-\frac{200}{t}=10\)
\(\Leftrightarrow\frac{200t-200\left(t-1\right)}{\left(t-1\right)t}=10\Leftrightarrow\frac{200}{t^2-t}=10\Leftrightarrow t^2-t=20\)
\(\Leftrightarrow t^2-t-20=0\Leftrightarrow\left(t-5\right)\left(t+4\right)=0\Leftrightarrow t=5\) (vì t > 0 )
Vận tốc xe 1 là: \(\frac{200}{5-1}=50\left(km/h\right)\)
Vận tốc xe 2 là: \(\frac{200}{5}=40\left(km/h\right)\)