K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

Đáp án D

Phương pháp: Sử dụng điều kiện để có cực đại giao thoa

Cách giải: Hai nguồn dao động cùng pha, cùng tần số nên ta có điều kiện để 1 điểm nằm trong miền giao thoa dao động cực đại là:  d 2   -   d 1 = k λ

Vậy điểm I là trung điểm của AB dao động cực đại.

Điểm M có: 30 – 20 = 10 = 2,5λ.

Tức là điểm M nằm ngoài cực đại bậc 2. Như vậy trong đoạn MI có 3 cực đại (có 2 cực đại giữa M và I, và chính I là 1 cực đại)

Chú ý: nếu đề bài hỏi trong khoảng MI thì chỉ có 2 cực đại vì không tính điểm I.

11 tháng 9 2015

Bước sóng \(\lambda = v/f = 1/25 = 0.04m = 4cm.\)

Độ lệch pha giữa hai nguồn sóng là \(\triangle\varphi= \varphi_2-\varphi_1 = \frac{5\pi}{6}+\frac{\pi}{6} = \pi.\)

Biên độ sóng tại điểm M là \( A_M = |2a\cos\pi(\frac{10-50}{4}-\frac{\pi}{2\pi})| =0.\)

23 tháng 8 2016

Ta có \lambda = \frac{9}{f} = 2
Và \frac{- S_1S_2}{\lambda } < k < \frac{ S_1S_2}{\lambda } (k \epsilon N) => có 9 điểm

O
ongtho
Giáo viên
21 tháng 9 2015

Hai nguồn ngược pha, cùng biên độ => \(\triangle\varphi = \pi\)

Biên độ tại điểm M là 

\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\frac{\pi}{2}| = 0.\)

16 tháng 5 2016

giải chi tiết nhé 

16 tháng 5 2016

Sóng cơ học

11 tháng 9 2015

 \(\lambda = v/f = 80/20 = 4cm.\)

\(\triangle \varphi = \pi-0=\pi.\)

Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)

\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)

23 tháng 4 2017

A

10 tháng 11 2015

\(\lambda =\frac{v}{f}=\frac{50}{10}=5cm.\)

Điểm M ngược pha với điểm I khi: \(\triangle \phi=\phi_I-\phi_M = 2\pi \frac{d_1-d_{1}^{'}}{\lambda}=(2k+1)\pi \Rightarrow d_1-d_1^{'}=(2k+1)\frac{\lambda}{2}\) 

Để điểm M gần I nhất thì hiệu d1 - d1' cũng phải nhỏ nhất khi đó k chỉ nhận giá trị nhỏ nhất là k = 0.

\(d_{1}-d_{1}^{'}=(2.0+1)\frac{5}{2}=2.5cm\Rightarrow d_1 = 7.5cm.\)

\(\Rightarrow MI= \sqrt {d_1^{2}-d_1^{'2}}\) = \(\sqrt{7.5^2-2.5^2}=\sqrt{50}cm\)

Hỏi đáp Vật lý

Vậy chọn B.  icon-chat