K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(giờ)(Điều kiện: x>24)

Thời gian người thứ hai hoàn thành công việc khi làm một mình là:

x-20(ngày)

Trong 1 ngày, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 ngày, người thứ hai làm được: \(\dfrac{1}{x-20}\)(công việc)

Trong 1 ngày, hai người làm được: \(\dfrac{1}{24}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{x-20}=\dfrac{1}{24}\)

\(\Leftrightarrow\dfrac{24\left(x-20\right)}{x\left(x-20\right)}+\dfrac{24x}{24x\left(x-20\right)}=\dfrac{x\left(x-20\right)}{24x\left(x-20\right)}\)

Suy ra: \(x^2-20x=24x-480+24x\)

\(\Leftrightarrow x^2-68x+480=0\)

\(\Delta=\left(-68\right)^2-4\cdot1\cdot480=2704\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{68-52}{2}=8\left(loại\right)\\x_2=\dfrac{68+52}{2}=\dfrac{120}{2}=60\left(nhận\right)\end{matrix}\right.\)

Vậy: Người thứ nhất cần 60 ngày để hoàn thành công việc khi làm một mình

Người thứ hai cần 40 ngày để hoàn thành công việc khi làm một mình

1,Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nêus người thứ nhất làm 3 giờ, người thứ hai làm trong 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nêu slamf riêng thì mỗi người hoàn thành công việc trong bao lâu2,Hai thợ cùng đào một con mương thì sau 2 giờ 55 phút thì xong việc. Nếu họ làm riêng thì đội một hoàn thành công việc nhanh hơn đội 2 là 2 giờ. Hỏi nếu làm...
Đọc tiếp

1,Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nêus người thứ nhất làm 3 giờ, người thứ hai làm trong 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nêu slamf riêng thì mỗi người hoàn thành công việc trong bao lâu

2,Hai thợ cùng đào một con mương thì sau 2 giờ 55 phút thì xong việc. Nếu họ làm riêng thì đội một hoàn thành công việc nhanh hơn đội 2 là 2 giờ. Hỏi nếu làm riêng thì mỗi đội pải làm bao nhiêu gioừ moứi xong công việc

3,Hai người thợ cungf sơn cưả cho một ngôi nhaf thì 2 ngày mới xong việc. Nếu người thứ nhất làm xong 4 ngày rồi nghỉ người thứ 2 làm tiếp trong 1 ngày nữa thì xong việc. Hỏi mỗi mỗi người làm một mình thì bao lâu mới xong việc

Mấy bạn nhơs giải chi tiết dùm mình nha!

0
13 tháng 11 2018

Gọi thời gian người thứ người thứ 1 làm một mình xong công việc là: x (ngày);

(x > 5,5)

Gọi thời gian người thứ người thứ 2 làm một mình xong công việc là: y (ngày);

(y > 5,5)

1 ngày người thứ nhất làm là 1 x công việc

1 ngày người thứ hai làm là 1 y công việc

Theo bài ra: người thứ nhất làm trong 7 ngày, người thứ 2 làm trong 5,5 ngày thì xong công việc nên ta có:

7 x + 5 , 5 y = 1    (1)

Vì làm một mình người thứ nhất lâu hơn người thứ hai là 3 ngày nên ta có:

x – y = 3     (2)

Từ (1) và (2) ta có hệ:

7 x + 5 , 5 y = 1 x − y = 3 ⇔ x = y + 3 7 y + 3 + 5 , 5 y = 1 ⇔ x = y + 3 7 y + 5 , 5 y + 16 , 5 = y 2 + 3 y ⇔ x = y + 3 y 2 − 9 , 5 y − 16 , 5 = 0 ⇔ x = y + 3 y = 11      ( t m d k ) y = − 1 , 5 ( k t m d k ) ⇔ y = 11 x = 14

vậy người thứ hai làm xong công việc một mình trong 11 (ngày); người thứ nhất làm xong công việc một mình trong 14 (ngày)

Đáp án:A

19 tháng 5 2022

Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )

Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)

9 tháng 6 2015

Gọi thời gian người 1, người 2 làm một mình xong công việc lần lượt là x, y ngày (x, y > 0)

Trong một ngày người 1 và người 2 lần lượt làm được và công việc.
suy ra phương trình:


Người 1 làm trong 3 ngày và người 2 làm trong 7,5 ngày lần lượt được và công việc suy ra phương trình:


Giải hệ được x = 18, y = 9. So sánh với điều kiện và kết luận

9 tháng 6 2015

người thứ nhất :18 ngày

người thứ hai :9 ngày phải hông ? kiểm tra giùm nghe

 

27 tháng 1 2017

biên luân ban tu lm nhe mk chi ghi hê pt ra thôi \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{1}{x}-\frac{1}{y}=\frac{1}{2}\end{cases}}\)  ban tu giai nhe 

27 tháng 1 2021

Tham khảo nhé !!!

undefinedundefined

a) Gọi x(ngày) và y(ngày) lần lượt là số ngày mà người thợ thứ nhất và người thợ thứ hai làm xong công việc khi làm một mình(Điều kiện: x>6 và y>6)

Trong 1 ngày, người thợ thứ nhất làm được:

\(\dfrac{1}{x}\)(công việc)

Trong 1 ngày, người thợ thứ hai làm được:

\(\dfrac{1}{y}\)(công việc)

Trong 1 ngày, hai người thợ làm được:

\(\dfrac{1}{6}\)(công việc)

Từ đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)

Vì khi làm một mình thì người thứ hai cần nhiều thời gian hoàn thành hơn người thứ nhất 9 ngày nên ta có phương trình:

x+9=y(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\x+9=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{x+9}=\dfrac{1}{6}\\x+9=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+9+x}{x\left(x+9\right)}=\dfrac{1}{6}\\x+9=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6\left(2x+9\right)=x\left(x+9\right)\\x+9=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x+54=x^2+9x\\x+9=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-3x-54=0\\x+9=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+6x-54=0\\x+9=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(x-9\right)+6\left(x-9\right)=0\\x+9=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-9\right)\left(x+6\right)=0\\x+9=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-9=0\\x+6=0\end{matrix}\right.\\y=x+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=9\left(nhận\right)\\x=-6\left(loại\right)\end{matrix}\right.\\y=x+9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=9+9=18\left(nhận\right)\end{matrix}\right.\)

Vậy: Người thứ nhất cần 9 ngày để hoàn thành công việc khi làm một mình

Người thứ hai cần 18 ngày để hoàn thành công việc khi làm một mình