Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài giải
Khi số sách của kệ 2 gấp 2 lần số sách kệ 1 thì lúc đó kệ 1 có :
420 : ( 1 + 2 ) x 1 = 140 ( quyển )
Khi số sách của kệ 2 gấp 2 lần số sách kệ 1 thì lúc đó kệ 2 có :
420 : ( 1 + 2 ) x 2 = 280 ( quyển )
Lúc đầu kệ 1 có :
140 + 10 = 150 ( quyển )
Lúc đầu kệ 2 có :
280 - 10 = 270 ( quyển )
Đáp số : Kệ 1 : 150 quyển
Kệ 2 : 270 quyển

Gọi số sách ở giá thứ nhất là x ( cuốn)
Số sách ở giá thứ hai là y (cuốn), (x, y∈ N*; x> 50, x< 450, y< 450)
Hai giá sách có tất cả 450 cuốn nên x+ y = 450 (1)
Khi chuyển 50 cuốn từ giá thứ nhất sang giá thứ hai thì số sách ở giá thứ nhất khi đó là x- 50 và số sách ở giá thứ hai là y+ 50
Theo đầu bài ta có:
Vậy số sách ở giá thứ nhất là 300 quyển, giá thứ hai là 150 quyển.

Gọi số sách ở giá thứ nhất là x ( cuốn)
Số sách ở giá thứ hai là y (cuốn), (x, y∈ N*; x> 50, x< 450, y< 450)
Hai giá sách có tất cả 450 cuốn nên x+ y = 450 (1)
Khi chuyển 50 cuốn từ giá thứ nhất sang giá thứ hai thì số sách ở giá thứ nhất khi đó là x- 50 và số sách ở giá thứ hai là y+ 50
Theo đầu bài ta có:
Vậy số sách ở giá thứ nhất là 300 quyển, giá thứ hai là 150 quyển.

gọi số sách lúc đầu ở giá 1 là x (cuốn)
ở giá 2 là y (cuốn)
Ta có phương trình tổng số sách ở 2 giá là x+ y = 450 (1)
theo đề bài ta có phương trình thứ hai là y + 50 = 4/5 (x-50) => 5(y+50) = 4(x-50) => 4x -5y = 450 (2)
giải hpt (1)(2) => x = 150; y = 300
Vậy số sách lúc đầu ở giá 1 là 150 ; giá 2 là 300 cuốn

Sau khi chuyển thì tổng số sách không đổi.
Sau khi chuyển nếu số sách ở ngăn thứ hai là \(4\)phần thì số sách ở ngăn thứ nhât là \(5\)phần.
Tổng số phần bằng nhau là:
\(4+5=9\)(phần)
Sau khi chuyển số sách ở ngăn thứ hai là:
\(450\div9\times4=200\)(cuốn)
Số sách ở ngăn thứ hai lúc đầu là:
\(200-50=150\)(cuốn)
Số sách ở ngăn thứ nhất lúc đầu là:
\(450-150=300\)(cuốn)
Sau khi chuyển thì tổng số sách hai ngăn không thay đổi.
Ta có sơ đồ :
Ngăn thứ nhất : |-----|-----|-----|-----|-----|
Ngăn thứ hai : |-----|-----|-----|-----|
Tổng số phần bằng nhau là :
4 + 5 = 9 ( phần )
Ngăn thứ hai chứa số sách lúc đầu là :
450 : 9 × 4 - 50 = 150 ( cuốn )
Ngăn thứ nhất chứa số sách lúc đầu là :
450 - 150 = 300 ( cuốn )
Đáp số : Ngăn thứ hai : 150 cuốn sách
Ngăn thứ nhất : 300 cuốn sách

Gọi x (cuốn) là số cuốn sách ở giá thứ nhất. ĐK: 450>x>50; \(x\in N\)
--> 450-x (cuốn) là số cuốn sách ở giá thứ hai
Khi chuyển 50 cuốn từ giá thứ nhất sang giá thứ hai thì số sách của giá thứ nhất lúc này là x-50 ( cuốn) và giá thứ hai là 500-x ( cuốn)
Khi đó số sách ở giá thứ hai bằng 4/5 số sách ở giá thứ nhất nên ta có pt:
\(500-x=\dfrac{4}{5}\left(x-50\right)\)
\(\Leftrightarrow500-x=\dfrac{4}{5}x-40\Leftrightarrow\dfrac{9}{5}x=540\Leftrightarrow x=300\)(tm)
Vậy số sách ở giá thứ nhất là 300 cuốn ; số sách ở giá thứ hai là 150 cuốn