K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Thể tích hình cầu A là :

\(\dfrac{4}{3}x^3\pi\left(cm^3\right)\)

Thể tích hình cầu B là :

\(\dfrac{4}{3}\left(2x\right)^3\pi=\dfrac{4}{3}.8x^3\pi\left(cm^3\right)\)

Tỉ số thể tích hai hình cầu A và B là :

\(\dfrac{\dfrac{4}{3}x^3\pi}{\dfrac{4}{3}.8x^3\pi}=\dfrac{1}{8}\)

Vậy chọn (C)

9 tháng 6 2017

a) Với giả thiết ở đề bài, ta có thể tính được r từ đó tính được diện tích mặt cầu gần bằng \(26cm^2\)

b) Tương tự câu a, ta tính được thể tích hình nón là \(7,9cm^3\)

9 tháng 6 2017

Chọn (B)

9 tháng 6 2017

Ta thấy ngay cạnh của hình lập phương gấp đôi bán kính hình cầu

a) Tỉ số cần tính \(\dfrac{6}{\pi}\)

b) Diện tích toàn phần của hình lập phương là \(42cm^2\)

c) Thể tích cần tính xấp xỉ \(244cm^3\)

9 tháng 6 2017

Chọn (A)

17 tháng 4 2017

Bài 30 Nếu thể tích của một hình cầu là thì trong các kết quả sau đây, kết quả nào là bán kính của nó(lấy π= 22/7)?

(A) 2 cm (B) 3 cm (C) 5 cm (D) 6 cm ;

(E) Một kết quả khác.

Giải:

Từ công thức: V = πR3 =>

Thay và π= 22/7 vào ta được

R3 = 27

Suy ra: R = 3

Vậy chọn B) 3cm

Sử dụng các thông tin và hình 107 để trả lời các câu hỏi sau : Một đồ chơi "lắc lư" của trẻ em gồm một hình nón gắn với nửa hình cầu (h.107) (chiều cao của hình nón bằng đường kính của đường tròn đáy). Có hai loại đồ chơi : loại thứ nhất cao 9cm, loại thứ hai cao 18cm. a) Tỉ số :\(\dfrac{V\left(đồchơiloaị1\right)}{V\left(đồchơiloaị2\right)}\) là : (A) 2                      ...
Đọc tiếp

Sử dụng các thông tin và hình 107 để trả lời các câu hỏi sau :

Một đồ chơi "lắc lư" của trẻ em gồm một hình nón gắn với nửa hình cầu (h.107) (chiều cao của hình nón bằng đường kính của đường tròn đáy). Có hai loại đồ chơi : loại thứ nhất cao 9cm, loại thứ hai cao 18cm.

a) Tỉ số :\(\dfrac{V\left(đồchơiloaị1\right)}{V\left(đồchơiloaị2\right)}\) là :

(A) 2                          (B) 4

(C) 8                          (D) 16

Hãy chọn kết quả đúng ?

b) Trong các số sau đây 

(A) 2 (cm)                  (B) 3 (cm)

(C) 4 (cm)                  (D) \(4\dfrac{1}{2}\left(cm\right)\)

Số nào là bán kính đường tròn đáy của đồ chơi loại thứ nhất ?

c) Trong các số sau đây :

(A) \(30\pi\left(cm^3\right)\)                       (B) \(36\pi\left(cm^3\right)\)

(C) \(72\pi\left(cm^3\right)\)                       (D) \(610\pi\left(cm^3\right)\)
Số nào là thể tích của đồ chơi loại thứ nhất ?

 

1

a: Chọn C

b: CHọn B

c: Chọn B

25 tháng 4 2017

Một hình cầu có số đo diện tích (đơn vị: m2) bằng số đo thể tích (đơn vị: m3). Tính bán kính hình cầu, diện tích mặt cầu và thể tích hình cầu.

Hướng dẫn làm bài:

Gọi R là bán kính hình cầu (đơn vị : mét)

Khi đó ta có: S = 4πR2V=4/3 πR3

Theo đề bài ta có: 4πR2=4/3πR3⇒R/3=1⇒R=3(m)

Ta có: S = 4πR2 = 4π . 32 = 36π (m2)

V=4/3 π R3=4/3 π.33=36π(m3)

9 tháng 6 2017

Gọi r là bán kính đáy của hình nón, h là độ dài đường cao

Thể tích hình nón là \(\dfrac{1}{3}\pi r^2h\)

Hình trụ. Hình nón. Hình cầu