Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thể tích hình cầu A là :
\(\dfrac{4}{3}x^3\pi\left(cm^3\right)\)
Thể tích hình cầu B là :
\(\dfrac{4}{3}\left(2x\right)^3\pi=\dfrac{4}{3}.8x^3\pi\left(cm^3\right)\)
Tỉ số thể tích hai hình cầu A và B là :
\(\dfrac{\dfrac{4}{3}x^3\pi}{\dfrac{4}{3}.8x^3\pi}=\dfrac{1}{8}\)
Vậy chọn (C)
a) Với giả thiết ở đề bài, ta có thể tính được r từ đó tính được diện tích mặt cầu gần bằng \(26cm^2\)
b) Tương tự câu a, ta tính được thể tích hình nón là \(7,9cm^3\)
Ta thấy ngay cạnh của hình lập phương gấp đôi bán kính hình cầu
a) Tỉ số cần tính \(\dfrac{6}{\pi}\)
b) Diện tích toàn phần của hình lập phương là \(42cm^2\)
c) Thể tích cần tính xấp xỉ \(244cm^3\)
Bài 30 Nếu thể tích của một hình cầu là thì trong các kết quả sau đây, kết quả nào là bán kính của nó(lấy π= 22/7)?
(A) 2 cm (B) 3 cm (C) 5 cm (D) 6 cm ;
(E) Một kết quả khác.
Giải:
Từ công thức: V = πR3 =>
Thay và π= 22/7 vào ta được
R3 = 27
Suy ra: R = 3
Vậy chọn B) 3cm
Một hình cầu có số đo diện tích (đơn vị: m2) bằng số đo thể tích (đơn vị: m3). Tính bán kính hình cầu, diện tích mặt cầu và thể tích hình cầu.
Hướng dẫn làm bài:
Gọi R là bán kính hình cầu (đơn vị : mét)
Khi đó ta có: S = 4πR2 và V=4/3 πR3
Theo đề bài ta có: 4πR2=4/3πR3⇒R/3=1⇒R=3(m)
Ta có: S = 4πR2 = 4π . 32 = 36π (m2)
V=4/3 π R3=4/3 π.33=36π(m3)
Gọi r là bán kính đáy của hình nón, h là độ dài đường cao
Thể tích hình nón là \(\dfrac{1}{3}\pi r^2h\)