Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé !!!
- TA có : \(\widehat{AMC}=\widehat{BMD}=30\)độ ( Đối đỉnh )
Vì góc AMD và góc BMD kề bù nên :
<=> Góc AMD + góc BMD = 180 độ
<=> góc AMD = 150 độ
b) Cặp đóc đối đỉnh : góc AMC và BMD
góc AMD và BMC
Cặp góc bù nhau : góc ACM và AMD
góc BMD và BMC
#)Giải :
a) Vì \(\widehat{NAQ}=\widehat{MAP}\)(hai góc đối đỉnh)
\(\Rightarrow\widehat{MAP}=\widehat{NAQ}=33^o\)
\(\Rightarrow\widehat{NAQ}=33^o\)
b)Vì \(\widehat{MAP}\)và \(\widehat{MAQ}\)là hai góc kề bù
\(\Rightarrow\widehat{MAP}+\widehat{MAQ}=180^o\)
\(\Rightarrow\widehat{MAQ}=180^o-\widehat{MAP}=180^o-33^o=147^o\)
Hai ý cuối dễ bạn tự làm
a) Ta có :
MAP = QAN = 33 độ ( đối đỉnh)
b) Mà MAP + MAQ = 180 ( kề bù)
=> MAQ = 180 - 33 = 147 độ
c) Các cặp góc đối đỉnh là : MAP = QAN
MAQ = PAN
Cắp cặp góc bù nhau :
MAP và PAN ; PAN và NAQ ; NAQ và QAM ; QAM và MAP
Bài 1 : giả sử :
Góc 1 = 47
góc 2 = 47 ( đối đỉnh vs góc 1 )
góc 3 = 133 ( kề bù vs góc 1)
góc 4 = 133 ( đối đỉnh vs góc 3)
x O y y' x' t t'
+) Tính \(\widehat{yOx'}\)
Ta có: \(\widehat{yOx'}+\widehat{xOy}=180^0\)(kề bù)
hay \(\widehat{yOx'}+36^0=180^0\)
\(\Leftrightarrow\widehat{yOx'}=180^0-36^0\)
\(\Leftrightarrow\widehat{yOx'}=144^0\)
Vậy \(\widehat{yOx'}=144^0\)
+) Tính \(\widehat{y'Ox'}\)
Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox'}\) và \(\widehat{yOx}\)là hai góc đối đỉnh.
\(\Rightarrow\widehat{y'Ox'}=\widehat{xOy}=36^0\)
Vậy \(\widehat{y'Ox'}=36^0\)
+) Tính \(\widehat{y'Ox}\)
Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox}\) và \(\widehat{yOx'}\)là hai góc đối đỉnh.
\(\Rightarrow\widehat{yOx'}=\widehat{xOy}'=144^0\)
Vậy \(\widehat{y'Ox}=144^0\)
b) Vì \(\widehat{y'Ox'}=\widehat{xOy}\)mà Ot là tia phân giác của \(\widehat{xOy}\),mà Ot' là tia phân giác của \(\widehat{x'Oy'}\)nên Ot và Ot' (điều hiển nhiên)