Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=3xy^2\cdot\dfrac{1}{4}x^4y^2\cdot4az^2=3ax^5y^4z^2\)
Hệ số là 3a
Bậc là 11
b: Đồng dạng là \(B=2x^5y^4z^2\)
Tổng là: \(A+B=\left(3a+2\right)\cdot x^5y^4z^2\)
a: \(A=5m\cdot x^6y^9\)
\(B=\dfrac{-2}{m}x^6y^9\)
Do đó: A và B đồng dạng
b: \(A-B=x^6y^9\cdot\left(5m+\dfrac{2}{m}\right)=\dfrac{5m^2+2}{m}\cdot x^6y^9\)
Do 3a2b6 luôn mang dấu dương với mọi a, b
Và y2 luôn dương
=> Để 2 đơn thức cùng dấu thì (-5a5) phải mang dấu dương => a phải mang dấu âm
ĐS: a mang dấu âm
Khẳng định (A) 3x2y3 và 3x3y2 là hai đơn thức đồng dạng : Sai
1/
Ta có \(\left(\frac{-1}{4}x^3y^4\right)\left(\frac{-4}{5}x^4y^3\right)\left(\frac{1}{2}xy\right)\)= \(\frac{1}{10}x^8y^8\ge0\)
Vậy ba đơn thức \(\frac{-1}{4}x^3y^4;\frac{-4}{5}x^4y^3;\frac{1}{2}xy\)không thể cùng có gt âm (đpcm)
Th1: 2 số cùng dương
=> \(-\frac{5}{6}a^2b^3\)dương mà a^2 dương và -5/6 âm => b^3 âm => b âm => a dương
=> \(\frac{2}{15}a^3b^5\)âm vì a^3 dương, b^5 âm và 2/15 dương
Th2 2 số cùng âm
=> \(-\frac{5}{6}a^2b^3\) => b dương và a âm => Vô lí ở số tiếp theo
Ta có: \(-2^{a^5b^2}\) và \(3^{a^2b^6}\)