Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:
Giả sử đội A và B làm riêng thì xong công việc trong lần lượt $a$ và $b$ ngày. ĐK: $a,b>0$
Trong 1 giờ:
Đội A hoàn thành $\frac{1}{a}$ công việc
Đội B hoàn thành $\frac{1}{b}$ công việc
Theo bài ra ta có: \(\left\{\begin{matrix} \frac{4}{a}+\frac{18}{b}=1\\ \frac{12}{a}+\frac{12}{b}=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{28}\\ \frac{1}{b}=\frac{1}{21}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=28\\ b=21\end{matrix}\right.\)

Gọi thời gian làm 1 mình xong việc của đội 1 là x ngày và của đội 2 là y ngày (với x>10;y>0)
Trong 1 ngày đội 1 làm được \(\dfrac{1}{x}\) phần công việc và đội 2 làm được \(\dfrac{1}{y}\) phần công việc
Do làm riêng đội 1 làm chậm hơn đội 2 là 10 ngày nên ta có:
\(x-y=10\) (1)
Hai đội làm chung trong 1 ngày được \(\dfrac{1}{x}+\dfrac{1}{y}\) phần công việc
Do 2 đội làm chung thì hoàn thành trong 12 ngày nên ta có:
\(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\) (2)
Từ (1) và (2) ta có hệ:
\(\left\{{}\begin{matrix}x-y=10\\12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-10\\12\left(x+y\right)=xy\end{matrix}\right.\)
Thế pt trên xuống pt dưới:
\(12\left(x+x-10\right)=x\left(x-10\right)\)
\(\Leftrightarrow x^2-34x+120=0\Rightarrow\left[{}\begin{matrix}x=30\\x=4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow y=x-10=20\)
Vậy đội 1 làm 1 mình xong trong 30 ngày và đội 2 xong trong 20 ngày
Gọi thời gian làm riêng hoàn thành công việc của đội một là x(ngày)
(Điều kiện: x>10)
Thời gian làm riêng hoàn thành công việc của đội 2 là x-10(ngày)
Trong 1 ngày, đội 1 làm được \(\dfrac{1}{x}\left(côngviệc\right)\)
Trong 1 ngày, đội 2 làm được \(\dfrac{1}{x-10}\left(côngviệc\right)\)
Trong 1 ngày, hai đội làm được \(\dfrac{1}{12}\left(côngviệc\right)\)
Do đó, ta có phương trình:
\(\dfrac{1}{x}+\dfrac{1}{x-10}=\dfrac{1}{12}\)
=>\(\dfrac{x-10+x}{x\left(x-10\right)}=\dfrac{1}{12}\)
=>\(x\left(x-10\right)=12\left(2x-10\right)\)
=>\(x^2-10x=24x-120\)
=>\(x^2-34x+120=0\)
=>(x-30)(x-4)=0
=>\(\left[{}\begin{matrix}x-30=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Vậy: Thời gian làm riêng hoàn thành công việc của đội 1 là 30 ngày
Thời gian làm riêng hoàn thành công việc của đội 2 là 30-10=20 ngày

so cong viec la 1, 1 ngay thi doi 1 lam dc 1/x cong viec, doi 2 lam dc 1/y cong viec
nen => moi ngay 2 doi lam dc 1/x cong 1/y cong viec, ca 2 doi phai mat 12 ngay moi hoan thanh xong cv nen moi ngay ho lam dc 1/12 cv => pt1
trong vong 8 ngay thi 2 doi hoan thanh dc 8*(1/x cong 1/y) =8/x cong 8/y
so cong viec con lai doi 2 phai lam, nhung vi nang suat cua ho tang gap 2 => so công viec moi ngay cua ho lam dc la 2/y
ho phai lam trong 3,5 ngay moi xong nen trong 3,5 ngay do ho lam dc 3,5*2/y
tong so cong viêc ca 2 doi lam trong 8 ngay cong voi so cong viêc con lai doi 2 hoan thanh la 1 => pt2
1 ngày đội I làm đc 1/x (phần công việc)
Trog 8 ngày đội I làm đc 8/x (phần công việc)
1 ngày đội II làm đc 1/y (phần công việc)
Trog 8 ngày đội II làm đc 8/y (phần công việc)
Vì năng suất của đội II tăng gấp đôi và họ đã làm xong công vc trong 3.5 ngày nên trog 3,5 ngày làm đc: 3,5.2/ y
Mà tổng số cv của cả 2 đội là 1 nên ta có PT:
8/x+ 8/ y + 3,5.2/ y = 1

Gọi thời gian mà đội 1 làm một mình xong cv là x (ngày) x > 0
Gọi thời gian mà đội 2 làm một mình xong cv là y (ngày) y > 0
Một ngày cả hai đội làm được 1/x + 1/y = 1/12 cv (1)
Nếu làm riêng 1 mình đội 1 nhanh hơn đội 2 là 7 ngày nên: x + 7 = y (2)
Giải hệ 2 pt trên ta được x = 21, y = 28

Gọi xx (ngày) là thời gian đội I làm một mình xong công việc với năng suất ban đầu (x>0)(x>0),
yy (ngày) là thời gian đội II làm một mình xong công việc với năng suất ban đầu (y>0)(y>0)
Trong 1 ngày đội I làm được 1x1x (công việc),
đội II làm được 1y1y (công việc)
Hai đội xây dựng làm chung theo dự định trong 12 ngày xong nên ta có:
12.1x+12.1y=112.1x+12.1y=1 (1)
Cả hai đội làm chung 8 ngày thì được 812=23812=23 (công việc)
Số công việc còn lại của đội II làm là: 1−23=131−23=13 (công việc)
Năng suất của đội II tăng gấp 2 lần nên 1 ngày làm được 2⋅1y=
Gọi x,y theo thứ tư là thời gian mà mỗi đội làm một mình thì hoàn thành công việc.
Với năng suất ban đầu: x,y > 0 và tính theo đơn vị ngày.
Trong 1 ngày đội I làm được 1/x công việc. 1 ngày đội II làm được 1/y công việc. 1 ngày cả 2 đội làm được 1/12 công việc.
Ta có phương trình: 1/x + 1/y = 1/12 (công việc)( 1)
Trong 8 ngày cả hai đội làm được 8. 1/12 = 2/3 (công việc).
Sau khi một đội nghỉ, năng suất của đội II là 2/y. Họ phải làm trong 3,5 ngày thì xong công việc nên ta có phương trình 1/3 : 2/y = 7/2
(2)
Ta có hệ:Giải hệ1,2 này, ta được x = 28 (ngày); y = 21(ngày) Chú ý: Ta có thể đặt hệ

goi thoi gian moi doi phai lam theo ke hoach la x( ngay,x>0)
thoi gian doi 1 da lam la x-2 (ngay)
thoi gian doi 2 da lam la x+2 ( ngay )
moi ngay doi 1 trong duoc 40x−240x−2(ha)
moi ngay doi 2 trong duoc 90x+290x+2(ha)
neu doi 1 lam xong x+2 ngay thi trong duoc 40x−2(x+2)40x−2(x+2)(ha)
nếu đội 2 làm xong x-2 ngày thì trồng được
90x+2(x−2)(ha)90x+2(x−2)(ha)
theo de bai thi dien h rung trong duoc cua 2 doi la bang nhau nen ta co pt:
40x−2(x+2)=90(x+2)(x−2)40x−2(x+2)=90(x+2)(x−2)
=> x=10 hoac x=2/5
x2>2=> x=2/5 loai
#)Giải :
Trong 1 ngày cả hai đội làm được :
1 : 50 = 1/50 (công trình)
Coi năng xuất làm việc của đội N là 1 phần thì đội A là 2 phần như thế
Tổng số phần bằng nhau là :
1 + 2 = 3 (phần)
Trong 1 ngày đội N làm được :
1/50 : 3 x 1 = 1/150 (công trình)
Trong 1 ngày đội A làm được :
1/150 x 2 = 1/75 (công trình)
Một mình đội N làm thì mất số thời gian là :
1 : 1/150 = 150 (ngày)
Một mình đội A làm thì mất số thời gian là :
1 : 1/75 = 75 (ngày)
Đ/số : Đội N : 150 ngày
Đội A : 75 ngày.