Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức (5.1 và 5.2 - SGK) ta tìm được:
A = 2,3 cm và φ = 0,73π
Phương trình dao động tổng hợp là: x = 2,3cos(5πt + 0,73π) (cm).
Biên độ dao động tổng hợp thỏa mãn: \(\left|A_1-A_2\right|\le A\le\left|A_1+A_2\right|\)
\(\Rightarrow\) A = 5 (cm) thỏa mãn hệ thức
Hai điểm cách gần nhau nhất là: \(\dfrac{\lambda}{2}=10\Rightarrow \lambda=20cm\)
M O1 O2 d1 d2
M dao động cực đại và cách O2 xa nhất khi M nằm ở vân ngoài cùng về phía O1.
Vị trí vân cực đại này là: \([\dfrac{196}{2.20}]=4\)
\(\Rightarrow d_2-d_1=4.\lambda=4.20=80cm\)
\(\Rightarrow d_2= d_1+80=196+80=276cm\)
Chọn D
Chọn B
+ A2 = A12 + A22 + 2A1A2cos(φ1 – φ2). Thay số vào ta được:
A2 = 102 + A22 + 20.A2cos(π/6 + π/2).
ó A22 - 10A2 +100 - A2 = 0 (1).
+ Để phương trình (1) có nghiệm đối với A2 ó Δ = 102 – 4.1.( 100 - A2) ≥ 0
=> A ≥ 5√3 cm.
Vậy: Amin = 5√3 cm.
Áp dụng công thức: \(A^2 = x^2 +\frac{v^2}{\omega^2} \) \(\Rightarrow A^2 = 3^2 +\frac{(60\sqrt3)^2}{\omega^2} = (3\sqrt2)^2 +\frac{(60\sqrt2)^2}{\omega^2} \)
Giải hệ trên ta được \(\omega = 20rad/s; \ A =6cm\)
Đáp án A
Hai dao động ngược pha thì biên độ tổng hợp đạt giá trị cực tiểu A =| A1 - A2|
Đáp án A
Hai dao động điều hòa cùng phương, cùng tần số, ngược pha nhau có biên độ lần lượt là A1 và A2. Dao động tổng hợp của hai dao động này có biên độ là A 1 - A 2