Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11/Theo BĐT AM-GM,ta có; \(ab.\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)\(=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự với hai BĐT kia,cộng theo vế và rút gọn ta được đpcm.
Dấu "=" xảy ra khi a= b=c
Ơ vãi,em đánh thiếu abc dưới mẫu,cô xóa giùm em bài kia ạ!
9/ \(VT=\frac{\Sigma\left(a+2\right)\left(b+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+8+abc+\left(ab+bc+ca\right)}\)
\(\le\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+9+3\sqrt[3]{\left(abc\right)^2}}\)
\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{ab+bc+ca+4\left(a+b+c\right)+12}=1\left(Q.E.D\right)\)
"=" <=> a = b = c = 1.
Mong là lần này không đánh thiếu (nãy tại cái tội đánh ẩu)
\(A=\frac{\sqrt{x}-5}{\sqrt{x}+5}=\frac{\sqrt{x}+5-10}{\sqrt{x}+5}=1-\frac{10}{\sqrt{x}+5}\)
Vì \(A< \frac{1}{3}=>1-\frac{10}{\sqrt{x}+5}< \frac{1}{3}\)
\(=>1-\frac{1}{3}< \frac{10}{\sqrt{x}+5}=>\frac{2}{3}< \frac{10}{\sqrt{x}+5}\)
\(=>2.\left(\sqrt{x}+5\right)< 30=>2\sqrt{x}+10< 30=>2\sqrt{x}< 20\)
\(=>\sqrt{x}< 10=>\left(\sqrt{x}\right)^2< 10^2=>x< 100\)
Vậy x<100 thì A<1/3
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)..................\left(1-\frac{1}{20}\right)\)
=\(\frac{1}{2}.\frac{2}{3}.............\frac{19}{20}\)
=\(\frac{1.2.3..............19}{2.3.4..............20}\)
=\(\frac{1}{20}\)
Ta có : \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)
Mà \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{8^2}<\frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}<1\)
Vậy B < 1
Giải:
Vì \(0\leq a,b,c\leq 1\Rightarrow ab,ac,ab\geq abc\)
Do đó mà \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\leq \frac{a+b+c}{abc+1}\)
Giờ chỉ cần chỉ ra \(\frac{a+b+c}{abc+1}\leq 2\). Thật vậy:
Do \(0\leq b,c\leq 1\Rightarrow (b-1)(c-1)\geq 0\Leftrightarrow bc+1\geq b+c\Rightarrow bc+a+1\geq a+b+c\)
Suy ra \( \frac{a+b+c}{abc+1}\leq \frac{bc+a+1}{abc+1}=\frac{bc+a-2abc-1}{abc+1}+2=\frac{(bc-1)(1-a)-abc}{abc+1}+2\)
Ta có \(\left\{\begin{matrix}bc\le1\\a\le1\\abc\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\left(bc-1\right)\left(1-a\right)\le1\\-abc\le0\end{matrix}\right.\) \(\Rightarrow \frac{(bc-1)(1-a)-abc}{abc+1}+2\leq 2\Rightarrow \frac{a+b+c}{abc+1}\leq 2\)
Chứng minh hoàn tất
Dấu bằng xảy ra khi \((a,b,c)=(0,1,1)\) và hoán vị.