chứng minh rằng nếu 2n+1 và 3n+1 đều là số chính phương thì n chia hết cho 40">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

18 tháng 3 2015

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để: 
2a + 1 = n^2 (1) 
3a +1 = m^2 (2) 
từ (1) => n lẻ, đặt: n = 2k+1, ta được: 
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1 
=> a = 2k(k+1) 
vậy a chẵn . 
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1 
(1) + (2) được: 
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1 
=> 5a = 4k(k+1) + 4p(p+1) 
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8 

ta cần chứng minh a chia hết cho 5: 
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9 
xét các trường hợp: 
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý) 

a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý) 
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7) 

a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý) 

a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý) 

=> a chia hết cho 5 

5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40 
hay : a là bội số của 40

4 tháng 4 2017

a = b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức .
Ta có các tính chất cua đồng dư thức và các tính chất sau: 
Cho x là số tự nhiên 
Nếu x lẻ thì =\(\Rightarrow\) x^2 =1 (mod 8) 
x2 =-1(mod 5) hoặc x= 0(mod 5) 
Nếu x chẵn thì x= \(-1\)(mod 5) hoặc x2 =1(mod 5) hoặc x= 0(mod 5) 
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt 
3a+1=m^2 
2a+1 =n^2 
=> m^2 -n^2 =a (1) 
m^2 + n^2 =5a +2 (2) 
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3) 
Từ (2) ta có (m^2 + n^2 )=2(mod 5) 
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5) 
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5 
từ pt ban đầu => n lẻ =>n^2=1(mod 8) 
=> 3n^2=3(mod 8) 
=> 3n^2 -1 = 2(mod 8) 
=> (3n^2 -1)/2 =1(mod 8) 
Từ (3) => m^2 = (3n^2 -1)/2 
do đó m^2 = 1(mod 8) 
ma n^2=1(mod 8) 
=> m^2 - n^2 =0 (mod 8) 
=> a chia hết cho 8 
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40 
Nếu bạn không biết đồng dư thức thì .......:))

11 tháng 3 2020

bên trên phần b là n chia hết cho 40 nha

3 tháng 4 2020

2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

30 tháng 7 2023

Ta có :

\(10\le n\le99\)

\(\Rightarrow21\le2n+1\le201\)

\(\Rightarrow2n+1\) là số chính phương lẻ (1)

\(\Rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)

\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{2n+1}{3n+1}=\dfrac{2.40+1}{3.40+1}=\dfrac{81}{121}=\left(\dfrac{9}{11}\right)^2\left(n=40\right)\)

\(\Rightarrow dpcm\)

\(\Rightarrow n=40⋮40\Rightarrow dpcm\)

27 tháng 8 2017

1)

Ta có :

\(A=12N^2-5N-25=\left(3N-5\right)\left(4N+5\right)\)

\(N< 2=3N-5< 0\)(KO DC )

\(N=2=A=13\RightarrowĐCPM\)

\(N>2=3N-5>1,4N+5>13\)

NÊN A CHIA HẾT CHO SỐ LỚN HƠN 1 VÀ LỚN HƠN 13

\(\Rightarrow\)KO PHẢI SỐ NGUYÊN TỐ

NÊN \(N=2\)

14 tháng 3 2024

tao là fan CR7

26 tháng 11 2024

Tao phan CR7 chứ ko phải Messi