Cho tam giác nhọn MNP, có Q là trung điểm của đoạn thẳng MP. Trên tia đối của tia QN lấ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2021

a) Xét 2 \(\Delta MNQ\)và \(\Delta PKQ\) có:

\(\hept{\begin{cases}KQ=QN\left(gt\right)\\PQ=QM\left(gt\right)\\\widehat{KQP}=\widehat{NQM\left(đ^2\right)}\end{cases}}\)

\(\Rightarrow\Delta MNQ=\Delta PKQ\left(c.g.c\right)\left(ĐPCM\right)\)

b) theo a, ta có : \(\Delta MNQ=\Delta PKQ\)

\(\Rightarrow\widehat{QPK}=\widehat{QMN}\)( 2 góc tương ứng )

Mà 2 góc này nằm ở vị trí so le trong của MN và PK :

\(\Rightarrow MN//PK\left(DHNB\right)\left(ĐPCM\right)\)

a: Xét ΔMIP và ΔKIN có 

IM=IK

\(\widehat{MIP}=\widehat{KIN}\)

IP=IN

Do đó: ΔMIP=ΔKIN

c: Xét ΔMEK có 

H là trung điểm của ME

I là trung điểm của MK

Do đó: HI là đường trung bình

=>HI//EK và HI=EK/2

Xét ΔMPE có

PH là đường cao

PH là đường trung tuyến

Do đó: ΔMPE cân tại P

Suy ra: PM=PE(1)

Xét tứ giác MNKP có

I là trung điểm của MK

I là trung điểm của NP

Do đó: MNKP là hình bình hành

Suy ra: NK=MP(2)

Từ (1) và (2) suy ra NK=PE

a: Xét ΔIQM và ΔINK có

IQ=IN

góc QIM=góc NIK

IM=IK

=>ΔIQM=ΔINK

b: ΔIQM=ΔINK

=>góc IQM=góc INK

=>QM//NK

c: Xét tứ giác MNKQ có

I là trung điểm chung của MK và NQ
góc QMN=90 độ

Do đó: MNKQ là hình chữ nhật

=>MK=QN

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0
25 tháng 12 2023

a) Xét △MIQ và △NIP ta có:

            IM=IN (gt)

       ∠MIQ=∠NIP(2 góc đối đỉnh)

          MQ=MP (gt)

Vậy : △MIQ = △NIP (c.g.c)

Vậy: QM = NP (2 cạnh tương ứng)

⇒ ∠MQI = ∠IPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong

Vậy : QM // NP

b) Xét △MEK và △PEN ta có:

            EM = EP (gt)

       ∠MEK =∠PEN (2 góc đối đỉnh)

            EK = EN (gt)

⇒ △MEK = △PEN (c.g.c)

⇒ ∠EMK = ∠EPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong

Vậy: MK//PN

c) Từ câu a và câu b, ta có : QM//NP và MK//PN

Vậy M,Q,K thẳng hàng.(1)

Ta có:△MEK=△PEN (theo câu b)

⇒ MK=NP (2 cạnh tương ứng)

⇒ QM=NP (theo câu a) và MK=NP(chứng minh trên)⇒QM=MK (2)

Từ (1) và (2), suy ra: M là trung điểm của đoạn thẳng QK.

 

25 tháng 12 2023

Mình ko biết là A trog câu c) ở đâu nên mình đổi thành Q nha!

12 tháng 5 2017

a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)

b) xét tam giác MNI và MPI có 

    MI chung 

    MN=MP(GT)

    IN=IP(MI là trung tuyến nên I là trung điểm NP)

SUY ra tam giác MNI=MPI(C-C-C)

c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)

d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I

   Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP

    Mà NP=12cm(gt) suy ra NI=12x1/2=6cm

   xét tam giác vuông MNI có

    NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)

   Suy ra MI2=NM2-NI2

 mà NM=10CM(gt) NI=6CM(cmt)

suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8

mà MI>0 Suy ra MI=8CM (đpcm)

ế) mik gửi cho bn bằng này nhé 

12 tháng 5 2017

a) Vì MN=MP => tam giác MNP là tam giác cân tại M.

b)Xét tam giác MIN và tam giác MIP có:

           MN=MP (vì tam giác MNP cân)

           \(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)

            NI=PI(vì MI là trung tuyến)

=> tam giác MIN=tam giác MIP(c.g.c)

c) Ta có: MN=MP

              IN=IP

=> M,I thuộc trung trực của NP

Hay MI là đường trung trực của NP

d) IN=IP=NP/2=12/2=6(cm)

Xét tam giác MIN có góc MIN =90*

 =>  MN^2=MI^2 + NI^2

 =>  MI^2=MN^2-NI^2

 =>  MN^2 = 10^2 - 6^2

 =>  MN = 8

e) Tam giác HEI có goc IHE=90*

 => góc HEI + góc HIE= 90*

Mà góc HIE = góc MEF/2

 => góc MEF/2 + góc HEI = 90*   (1)

Mà góc MEF + góc HEI + góc IEF = 180*

 => góc MEF/2 + góc IEF = 90*     (2)

  Từ (1) và (2)   =>  góc HEI = góc IEF

Hay EI là tia phân giác của góc HEF