\(GTNN:\)\(M=\frac{x^2+y^2}{xy}\left(x\ge2y;x>0;y>0\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Vì x>0;y>0 nên theo bất đẳng thức Cô-Si:

\(x^2+y^2\ge2\sqrt{x^2.y^2}=2xy\)

\(=>M=\frac{x^2+y^2}{xy}\ge\frac{2xy}{xy}=2\)

Dấu "=" xảy ra <=> x=y

Vậy MinM=2 khi x=y

18 tháng 9 2017

2) Viết nhầm thì phải, vế phải là 12 nhỉ

\(x\left(x-1\right)+y\left(y-1\right)=x^2+y^2-\left(x+y\right)\ge\dfrac{\left(x+y\right)^2}{2}-\left(x+y\right)\ge\dfrac{6^2}{2}-6=12\)

1) \(x\ge2y>0\Rightarrow x^3\ge8y^3\)

\(P=\dfrac{x^2+y^2}{xy}=\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{x^2}{4xy}+\dfrac{4y^2}{4xy}\ge5\sqrt[5]{\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{x^2}{4xy}.\dfrac{4y^2}{4xy}}=5\sqrt[5]{\dfrac{x^3}{256y^3}}\ge5\sqrt[5]{\dfrac{8y^3}{256y^3}}=5\sqrt[5]{\dfrac{1}{32}}=\dfrac{5}{2}\)

16 tháng 1 2020
https://i.imgur.com/9kh5GNG.png
NV
16 tháng 7 2020

Đặt \(\frac{x}{y}+\frac{y}{x}=a\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=a^2-2\)

Ta cũng có: \(a=\frac{x^2+y^2}{xy}=\frac{\left(x-y\right)^2}{xy}+2\ge2\)

Vậy \(B=2\left(a^2-2\right)-a+1\) với \(a\ge2\)

\(B=2a^2-a-3=2a^2-a-6+3\)

\(B=\left(a-2\right)\left(2a+3\right)+3\)

Do \(a\ge2\Rightarrow\left\{{}\begin{matrix}a-2\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-2\right)\left(2a+3\right)\ge0\)

\(\Rightarrow B\ge3\Rightarrow B_{min}=3\) khi \(a=2\) hay \(x=y\)

16 tháng 7 2020

mình cảm ơn ạ

4 tháng 7 2020

Bạn có thể tham khảo ở đây: https://olm.vn/hoi-dap/detail/99503384500.html
Thông tin đến bạn!

cảm ơn nha ^^

cho mik hỏi x,y bằng bn đc ko ạ, ko cần giải ra, nói thôi bucminh

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

20 tháng 6 2021

Ta có A = 2018.2020 + 2019.2021

= (2020 - 2).2020 + 2019.(2019 + 2) 

= 20202 - 2.2020 + 20192 + 2.2019

= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B

=> A = B

b) Ta có B = 964 - 1= (932)2 - 12 

= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1) 

  (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80 

mà A =   (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10

=> A < B

20 tháng 6 2021

c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)

=> A < B

d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)

=> A < B

đăng lên làm j z