![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a) Vì ( x + 1 )2 ≥ 0 ∀ x
=> M = ( x + 1 )2 - 3 ≥ -3
Dấu "=" xảy ra <=> ( x + 1 )2 = 0
<=> x + 1 = 0 <=> x = -1
b) Vì ( y + 3 )2 ≥ 0 ∀ x
=> N = 5 - ( y + 3 )2 ≥ 5
Dấu "=" xảy ra <=> ( y + 3 )2 = 0
<=> y + 3 = 0 <=> y = -3
![](https://rs.olm.vn/images/avt/0.png?1311)
x2 >= 0 với mọi x
=>x2+1 >= 1 với mọi x
=>(x2+1)2 >= 1 với mọi x
=>(x2+1)2+|25-7y|+7 >= 1+7=8 với mọi x
=>Amin=8
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(A=4\left|x-2\right|+1\)
Ta có : \(4\left|x-2\right|\ge0\)
\(\Rightarrow4\left|x-2\right|+1\ge1\)
Vậy giá trị nhỏ nhất là 1 khi x - 2 = 0 => x = 2
b, Ta đã biết với mọi \(x,y\inℚ\)thì \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Đẳng thức xảy ra khi \(xy\ge0\)
Ta có \(B=\left|x-2020\right|+\left|x-1\right|=\left|x-2020\right|+\left|1-x\right|\ge\left|x-2020+1-x\right|=\left|-2019\right|=2019\)
Vậy \(B\ge2019\), B đạt giá trị nhỏ nhất là 2019 khi \(1\le x\le2020\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(5x=2y=3z\)
\(\Rightarrow5x:30=2y:30=3z:30\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Lại có: \(x+y-2=220\Rightarrow x+y=222\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)
Vậy ...
Bài 1:
\(5x=2y=3z\)
\(\Rightarrow5x:30=2y:30=3z:30\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Vì \(x+y-2=220\Rightarrow x+y=222\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
(x2 + 1)2 \(\ge\)0 và |25 - 9y| \(\ge\)0
=> A = (x2 + 1)2 + |25 - 9y| + 7\(\ge\)0 + 7
Dấu bằng xảy ra khi: (x2 + 1)2 + |25 - 9y| =0
Vậy A min = 7
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) A = \(\left|x-\frac{1}{2}\right|+30\ge0+30=30\)
=> GTNN của A = 30 khi x - 1/2 = 0 => x = 1/2
b) B = \(40-\left|12+x\right|\) \(\le\) 40 - 0 = 40 (Vì \(\left|12+x\right|\ge0\) với mọi x)
=> GTLN của B = 40 khi 12 + x = 0 => x = -12
![](https://rs.olm.vn/images/avt/0.png?1311)
(x+1)^2>=0 và (y-1)^2>=0
=>C>=-10
Dấu = xảy ra khi x+1=0,y-1=0
=>x=-1,y=1
Vậy C=-10 khi x=-1,y=1
k cho mk nha