K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

mode 7 rùi nhập hàm số trên vào ra kết quả = sấp sỉ 5 nha bn

18 tháng 8 2017

Bài 1 :

a, \(A=x\left(x-6\right)+10\)

=x^2 - 6x + 10

=x^2 - 2.3x+9+1

=(x-3)^2 +1 >0 Với mọi x dương

18 tháng 8 2017

Cảm ơn bạn Vũ Anh Quân ;) ;) ;) 

1 tháng 4 2018

D = \(-\dfrac{5}{x^2-4x+7}\)

Vì: x2 - 4x + 7

= x2 - 4x + 4 + 3

= (x - 2)2 + 3 \(\ge\) 3 \(\forall\)x

\(\Rightarrow\) \(\dfrac{5}{\left(x-2\right)^2+3}\) \(\le\) \(\dfrac{5}{3}\) \(\forall\)x

\(\Rightarrow\) \(-\dfrac{5}{\left(x-2\right)^2+3}\)\(\ge\)-\(\dfrac{5}{3}\) \(\forall\)x

Dấu"=" xảy ra khi:

x - 2 = 0

\(\Rightarrow\) x = 2

Vậy.............

E = \(\dfrac{2x^2+4x+4}{x^2+2x+4}\)

Ta có:

\(\dfrac{2x^2+4x+4}{x^2+2x+4}\)

= \(\dfrac{2\left(x^2+2x+4\right)-4}{x^2+2x+4}\)

= 2 - \(\dfrac{4}{x^2+2x+4}\)

Vì:

x2 + 2x + 4

= x2 + 2x + 1 + 3

= (x + 1)2 + 3 \(\ge\) 3 \(\forall\)x

\(\Rightarrow\) \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{4}{3}\) \(\forall\)x

\(\Rightarrow\) 2 - \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{2}{3}\) \(\forall\)x

Dấu "=" xảy ra khi:

x + 1 = 0

\(\Rightarrow\) x = -1

Vậy...............

F = \(\dfrac{6x+8}{x^2+1}\)

= \(\dfrac{x^2+6x+9-x^2-1}{x^2+1}\)

= \(\dfrac{\left(x+3\right)^2-\left(x^2+1\right)}{x^2+1}\)

= \(\dfrac{\left(x+3\right)^2}{x^2+1}-1\) \(\ge\) -1 \(\forall\)x

Dấu "=" xảy ra khi:

(x + 3)2 = 0

\(\Rightarrow\) x + 3 = 0

\(\Rightarrow\) x = -3

Vậy.....................

2 tháng 4 2018

Cảm ơn bạn nha🙂

12 tháng 7 2018

Mik sẽ hậu ta ạ

4 tháng 7 2017

Ta có : P = 4x(x - 1) + 11 

= 4x2 - 4x + 11

= (2x)2 - 4x + 1 + 10

= (2x - 1)2 + 10

Mà (2x - 1)2 \(\ge0\forall x\)

Nên (2x - 1)2 + 10 \(\ge10\forall x\)

Vậy GTNN của biểu thức là 10 khi và chỉ khi x = \(\frac{1}{2}\)

14 tháng 5 2017

tu lam

14 tháng 5 2017

bạn chia ra thui có kq mmk làm cho

14 tháng 7 2018

các câu còn lại lm tương tự nhé ^^

14 tháng 7 2018

a,\(A=x^2-x-1\)

\(=x^2-x+\frac{1}{4}-\frac{5}{4}\)

\(=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)

Vì:\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\forall x\)

Hay:\(A\ge0\forall x\)

Dấu = xảy ra khi:\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy Min A=-5/4 tại x=1/2

Hai phần cn lại lm tg  tự nha bn

27 tháng 8 2016

a  A=4x-x^2+3

      =(x-2)^2-1

     MIN A= -1 khi (x-2)^2=0

      x-2=0

      x=2

B=x-x^2

B=-x^2+x

-B=x^2-x

-B=(x-1/2)^2-1/4

B=-(x-1/2)^2+1/4

MAX B=1/4 khi -(x-1/2)^2=0

x-1/2=0

x=1/2

N=2x-2x^2-5

-N=2x^2-2x+5

-N=2(x^2-x+2)+1

-N=2{(x-1/2)^2+7/4}+1

-N=2(x-1/2)^2+7/2+1

-N=2(x-1/2)^2+9/2

N=-2(x-1/2)^2-9/2

MAX N=-9/2 khi -2(x-1/2)^2=0

x-1/2=0

x=1/2

17 tháng 9 2020

\(A=2x^2-2x+9-2xy+y^2\)

\(\Leftrightarrow A=\left(x^2-2x+1\right)+\left(x^2-2xy+y^2\right)+8\)

\(\Leftrightarrow A=\left(x-1\right)^2+\left(x-y\right)^2+8\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(x-y\right)^2\ge0\forall x;y\end{cases}}\)=> \(A=\left(x-1\right)^2+\left(x-y\right)^2+8\ge8\)

Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=1\\x-y=0\end{cases}}\Leftrightarrow x=y=1\)

Vậy MinA = 8 <=> x = y = 1

13 tháng 6 2018

Ta có : 

\(4x\left(x-1\right)-3\left(x^2-5\right)-x^2=\left(x-3\right)-\left(x+4\right)\)

\(\Leftrightarrow\)\(4x^2-4x-3x^2+15=x-3-x-4\)

\(\Leftrightarrow\)\(x^2-4x+15=-7\)

\(\Leftrightarrow\)\(\left(x^2-2.x.2+2^2\right)+11=-7\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=-18\)

Mà \(\left(x-2\right)^2\ge0\) \(\left(\forall x\inℝ\right)\)

\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)

Vậy không có giá trị nào của x thoã mãn đề bài 

Chúc bạn học tốt ~