Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
![](https://rs.olm.vn/images/avt/0.png?1311)
1)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|y-5\right|+\left|y+2012\right|\ge\left|y-5+2012+y\right|=2007\)
Dấu "=" khi \(-2012\le x\le5\)
Vậy MinA=2007 khi \(-2012\le x\le5\)
2)Ta thấy:\(\left|2x-3\right|\ge0\)
\(\Rightarrow-\left|2x-3\right|\le0\)
\(\Rightarrow-5-\left|2x-3\right|\le-5\)
Dấu "=" khi \(x=\frac{3}{2}\)
Vậy MaxN=-5 khi \(x=\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(A=2.\left|3x-1\right|-4\)
Ta có:
\(\left|3x-1\right|\ge0\) \(\forall x.\)
\(\Rightarrow2.\left|3x-1\right|\ge0\) \(\forall x.\)
\(\Rightarrow2.\left|3x-1\right|-4\ge-4\) \(\forall x.\)
\(\Rightarrow A\ge-4.\)
Dấu '' = '' xảy ra khi:
\(3x-1=0\)
\(\Rightarrow3x=0+1\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\frac{1}{3}.\)
Vậy \(MIN_A=-4\) khi \(x=\frac{1}{3}.\)
2.
\(B=10-4.\left|x-2\right|\)
Ta có:
\(\left|x-2\right|\ge0\) \(\forall x.\)
\(\Rightarrow-4.\left|x-2\right|\le0\) \(\forall x.\)
\(\Rightarrow10-4.\left|x-2\right|\le10\) \(\forall x.\)
\(\Rightarrow B\le10.\)
Dấu '' = '' xảy ra khi:
\(x-2=0\)
\(\Rightarrow x=0+2\)
\(\Rightarrow x=2.\)
Vậy \(MAX_B=10\) khi \(x=2.\)
Chúc bạn học tốt!
1.\(A=2\left|3x-1\right|-4\)
+Có: \(\left|3x-1\right|\ge0với\forall x\\ \Rightarrow2\left|3x-1\right|-4\ge-4\\ \Leftrightarrow A\ge-4\)
+Dấu ''='' xảy ra khi \(\left|3x-1\right|=0\Leftrightarrow x=\frac{1}{3}\)
+Vậy \(A_{min}=-4\) khi \(x=\frac{1}{3}\)
2.\(B=10-4\left|x-2\right|\)
+Có: \(-4\left|x-2\right|\le0với\forall x\\ \Rightarrow10-4\left|x-2\right|\le10\\ \Leftrightarrow B\le10\)
+Dấu ''='' xảy ra khi \(\left|x-2\right|=0\Leftrightarrow x=2\)
+Vậy \(B_{max}=10\) khi \(x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 2:
a) Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Rightarrow x^4+3x^2+2\ge2\forall x\)
Dấu '=' xảy ra khi
\(x^4+3x^2=0\Leftrightarrow x^2\left(x^2+3\right)=0\)
Vì \(x^2\ge0\forall x\)
nên \(x^2+3\ge3>0\forall x\)
Do đó: \(x^2=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(A=x^4+3x^2+2\) là 2 khi x=0
b)\(B=\left(x^4+5\right)^2\)
Ta có: \(x^4\ge0\forall x\)
\(\Rightarrow x^4+5\ge5\forall x\)
\(\Rightarrow\left(x^4+5\right)^2\ge25\forall x\)
Dấu '=' xảy ra khi
\(x^4+5=5\Leftrightarrow x^4=0\Leftrightarrow x=0\)
Vậy: GTNN của biểu thức \(B=\left(x^4+5\right)^2\) là 25 khi x=0
c) \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
Do đó: \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2-2\ge-2\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy: GTNN của biểu thức \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\) là -2 khi x=1 và y=-2
Câu 3:
a) \(A=5-3\left(2x-1\right)^2\)
Ta có: \(A=5-3\left(2x-1\right)^2=-3\left(2x-1\right)^2+5\)
Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi
\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy: GTLN của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\frac{1}{2}\)
b) \(B=\frac{1}{2\left(x-1\right)^2+3}\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: GTLN của biểu thức \(B=\frac{1}{2\left(x-1\right)^2+3}\) là \(\frac{1}{3}\) khi x=1
c) \(C=\frac{x^2+8}{x^2+2}\)
Ta có: \(C=\frac{x^2+8}{x^2+2}=\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\forall x\)
\(\Rightarrow\frac{6}{x^2+2}\le3\forall x\)
\(\Rightarrow1+\frac{6}{x^2+2}\le4\forall x\)
Dấu '=' xảy ra khi
\(x^2=0\Leftrightarrow x=0\)
Vậy: Giá trị lớn nhất của biểu thức \(C=\frac{x^2+8}{x^2+2}\) là 4 khi x=0
Đặt \(A=3.\left(6-\left|y-1\right|\right)-\left(x-2\right)^2\)
Vì \(\left|y-1\right|\ge0;\left(x-2\right)^2\ge0\forall x,y\)
\(\Rightarrow6-\left|y-1\right|\le6\forall y\Rightarrow3\left(6-\left|y-1\right|\right)\le18\forall x\)
\(\Rightarrow3\left(6-\left|y-1\right|\right)-\left(x-2\right)^2\le18\forall x,y\)
Dấu ''='' xảy ra \(\Leftrightarrow\left|y-1\right|=0;\left(x-2\right)^2=0\Rightarrow y=1;x=2\)
Vậy GTLN của A là 18 tại x = 2 , y = 1
mơn nhưng cái \(\forall\) này là j z ???